Table Of ContentVisible-Light-ActivePhotocatalysis:
NanostructuredCatalystDesign,
Mechanisms,andApplications
Visible-Light-Active Photocatalysis:
Nanostructured Catalyst Design,
Mechanisms, and Applications
EditedbySrabantiGhosh
Editor AllbookspublishedbyWiley-VCHare
carefullyproduced.Nevertheless,authors,
Dr.SrabantiGhosh editors,andpublisherdonotwarrantthe
CSIR-CentralGlassandCeramic informationcontainedinthesebooks,
ResearchInstitute includingthisbook,tobefreeoferrors.
FuelCell&BatteryDivision Readersareadvisedtokeepinmindthat
196,RajaS.C.MullickRoad statements,data,illustrations,procedural
700032Kolkata detailsorotheritemsmayinadvertently
India beinaccurate.
LibraryofCongressCardNo.:appliedfor
Cover
BackgroundimageFotolia:
BritishLibraryCataloguing-in-Publication
DudarevMikhail
Data
Acataloguerecordforthisbookis
availablefromtheBritishLibrary.
Bibliographicinformationpublishedby
theDeutscheNationalbibliothek
TheDeutscheNationalbibliothek
liststhispublicationintheDeutsche
Nationalbibliografie;detailed
bibliographicdataareavailableonthe
Internetat<http://dnb.d-nb.de>.
©2018Wiley-VCHVerlagGmbH&Co.
KGaA,Boschstr.12,69469Weinheim,
Germany
Allrightsreserved(includingthoseof
translationintootherlanguages).Nopart
ofthisbookmaybereproducedinany
form–byphotoprinting,microfilm,or
anyothermeans–nortransmittedor
translatedintoamachinelanguage
withoutwrittenpermissionfromthe
publishers.Registerednames,trademarks,
etc.usedinthisbook,evenwhennot
specificallymarkedassuch,arenottobe
consideredunprotectedbylaw.
PrintISBN:978-3-527-34293-8
ePDFISBN:978-3-527-80814-4
ePubISBN:978-3-527-80815-1
MobiISBN:978-3-527-80816-8
oBookISBN:978-3-527-80817-5
CoverDesign SchulzGrafik-Design,
Fußgönheim,Germany
Typesetting SPiGlobal,Chennai,India
PrintingandBinding
Printedonacid-freepaper
10 9 8 7 6 5 4 3 2 1
IdedicatethisbooktomyHUSBANDandPARENTS.
vii
Contents
Preface xvii
PartI Visible-LightActivePhotocatalysis–Researchand
TechnologicalAdvancements 1
1 ResearchFrontiersinSolarLightHarvesting 3
SrabantiGhosh
1.1 Introduction 3
1.2 Visible-Light-DrivenPhotocatalysisforEnvironmentalProtection 4
1.3 PhotocatalysisforWaterSplitting 8
1.4 PhotocatalysisforOrganicTransformations 11
1.5 MechanisticStudiesofVisible-Light-ActivePhotocatalysis 13
1.6 Summary 14
References 15
2 RecentAdvancesonPhotocatalysisforWaterDetoxification
andCO Reduction 27
2
CarlottaRaviolaandStefanoProtti
2.1 Introduction 27
2.2 PhotocatalystsforEnvironmentalRemediationandCO
2
Reduction 30
2.2.1 UndopedTiO 30
2
2.2.2 UndopedMetalOxidesDifferentfromTiO 32
2
2.2.3 CarbonModifiedMetalOxidesasPhotocatalysts 33
2.2.4 DopedMetalOxides 34
2.2.5 Perovskites 35
2.2.6 MetalChalcogenides 36
2.2.7 OtherCatalysts 37
2.3 PhotoreactorsforSolarDegradationofOrganicPollutantsandCO
2
Reduction 38
2.3.1 NonConcentrating(LowConcentrationorLowTemperature)
Systems 39
2.3.2 MediumConcentratingorMediumTemperatureSystems 40
viii Contents
2.3.3 HighConcentratingorHigh-TemperatureSystems 42
2.3.4 ParametersofaSolarReactor 43
2.4 Conclusion 44
Acknowledgment 44
References 45
3 FundamentalsofPhotocatalyticWaterSplitting(Hydrogenand
OxygenEvolution) 53
SanjibShyamal,ParamitaHajra,HarahariMandal,AparajitaBera,
DebasisSariket,andChinmoyBhattacharya
3.1 Introduction 53
3.2 StrategyforDevelopmentofPhotocatalystSystemsforWater
Splitting 54
3.3 ElectrochemistryofSemiconductorsattheElectrolyteInterface 56
3.4 EffectofLightattheSemiconductor–ElectrolyteInterface 58
3.5 ConversionandStorageofSunlight 62
3.6 ElectrolysisandPhotoelectrolysis 63
3.7 DevelopmentofPhotocatalystsforSolar-DrivenWaterSplitting 65
3.8 ApproachestoDevelopVisible-Light-AbsorbingMetalOxides 66
3.9 Conclusions 68
References 68
4 PhotoredoxCatalyticActivationofCarbon—HalogenBonds:
C—HFunctionalizationReactionsunderVisibleLight 75
JavierI.BardagiandIndrajitGhosh
4.1 Introduction 75
4.2 ActivationofAlkylHalides 77
4.3 ActivationofArylHalides 91
4.4 FactorsThatDeterminetheCarbon–HalogenBondActivationofAryl
Halides 108
4.5 FactorsThatDeterminetheYieldsoftheC—HArylated
Products 109
4.6 AchievementsandChallengesAhead 109
4.7 Conclusion 110
References 110
PartII DesignandDevelopmentsofVisibleLightActive
Photocatalysis 115
5 BlackTiO :TheNew-GenerationPhotocatalyst 117
2
SanjayGopalUllattil,SoumyaB.Narendranath,andPradeepanPeriyat
5.1 Introduction 117
5.2 DesigningBlackTiO Nanostructures 118
2
5.3 BlackTiO asPhotocatalyst 122
2
5.4 Conclusions 123
References 123
Contents ix
6 EffectofModificationofTiO withMetalNanoparticlesonIts
2
PhotocatalyticPropertiesStudiedbyTime-Resolved
MicrowaveConductivity 129
HyndRemita,MaríaGuadalupeMéndezMedrano,andChristophe
Colbeau-Justin
6.1 Introduction 129
6.2 DepositionofMetalNanoparticlesbyRadiolysisandby
PhotodepositionMethod 130
6.3 ElectronicPropertiesStudiedTime-ResolvedMicrowave
Conductivity 132
6.3.1 SurfaceModificationofTitaniawithMonometallic
Nanoparticles 133
6.3.1.1 SurfaceModificationofTitaniawithPtClusters 133
6.3.1.2 SurfaceModificationofTiO withPdNanoparticles 135
2
6.3.1.3 ModificationofTiO withAgNanoparticles 136
2
6.4 ModificationofTiO withAuNanoparticles 138
2
6.5 ModificationofTiO withBiClusters 144
2
6.6 SurfaceModificationofTiO withBimetallicNanoparticles 146
2
6.6.1 SurfaceModificationwithAu–CuNanoparticles 146
6.6.2 SurfaceModificationwithAgandCuONanoparticles 148
6.6.3 ComodificationofTiO withNiandAuNanoparticlesforHydrogen
2
Production 150
6.6.4 TiO ModifiedwithNiPdNanoalloysforHydrogenEvolution 153
2
6.7 TheEffectofMetalClusterDepositionRouteonStructureand
PhotocatalyticActivityofMono-andBimetallicNanoparticles
SupportedonTiO 155
2
6.8 Summary 156
References 157
7 GlassyPhotocatalysts:NewTrendinSolarPhotocatalysis 165
BharatB.Kale,ManjiriA.Mahadadalkar,andAshwiniP.Bhirud
7.1 Introduction 165
7.2 FundamentalsofH SSplitting 166
2
7.2.1 General 166
7.2.2 ThermodynamicsofH SSplitting 166
2
7.2.3 RoleofPhotocatalysts 167
7.3 DesigningtheAssemblyforH SSplitting 168
2
7.3.1 StandardizationofH SSplittingSetup 168
2
7.3.2 InteractionofPhotocatalystandReagentSystem 169
7.4 ChalcogenidePhotocatalysts 170
7.5 LimitationsofPowderPhotocatalysts 170
7.6 GlassyPhotocatalyst:InnovativeApproach 171
7.6.1 Semiconductor–GlassNanocompositesandTheirAdvantages 171
7.7 GeneralMethodsforGlassesPreparation 172
7.7.1 GlassbyMelt-QuenchTechnique 172
7.8 ColoroftheGlass–BandgapEngineeringbyGrowthof
SemiconductorsinGlass 174
x Contents
7.9 CdS–GlassNanocomposite 174
7.10 Bi S –GlassNanocomposite 178
2 3
7.11 Ag PO –GlassNanocomposite 179
3 4
7.12 Summary 183
Acknowledgments 184
References 184
8 RecentDevelopmentsinHeterostructure-BasedCatalystsfor
WaterSplitting 191
J.A.SavioMoniz
8.1 Introduction 191
8.1.1 BandAlignment 193
8.2 Visible-Light-ResponsiveJunctions 195
8.2.1 BiVO -BasedJunctions 195
4
8.2.1.1 BiVO /WO 197
4 3
8.2.1.2 BiVO /ZnO 197
4
8.2.1.3 BiVO /TiO 199
4 2
8.2.1.4 BiVO /Carbon-BasedMaterials 199
4
8.2.2 Fe O -BasedJunctions 199
2 3
8.2.3 WO -BasedJunctions 201
3
8.2.4 C N -BasedJunctions 202
3 4
8.2.5 Cu O-BasedJunctions 204
2
8.3 Visible-Light-DrivenPhotocatalyst/OECJunctions 207
8.3.1 BiVO /OEC 207
4
8.3.2 Fe O /OEC 207
2 3
8.3.3 WO /OEC 208
3
8.4 ObservationofChargeCarrierKineticsinHeterojunction
Structure 209
8.4.1 TransientAbsorptionSpectroscopy 209
8.4.2 ElectrochemicalImpedanceSpectroscopy 211
8.4.3 SurfacePhotovoltageSpectroscopy 213
8.5 Conclusions 215
References 216
9 ConductingPolymersNanostructuresforSolar-Light
Harvesting 227
SrabantiGhosh,HyndRemita,andRajendraN.Basu
9.1 Introduction 227
9.2 ConductingPolymersasOrganicSemiconductor 228
9.3 ConductingPolymer-BasedNanostructuredMaterials 231
9.4 SynthesisofConductingPolymerNanostructures 231
9.4.1 HardTemplates 232
9.4.2 SoftTemplates 232
9.4.3 TemplateFree 233
9.5 ApplicationsofConductingPolymer 233
9.5.1 ConductingPolymerNanostructuresforOrganicPollutant
Degradation 233
Contents xi
9.5.2 ConductingPolymerNanostructuresforPhotocatalyticWater
Splitting 237
9.5.3 ConductingPolymer-BasedHeterostructures 242
9.6 Conclusion 245
References 246
PartIII VisibleLightActivePhotocatalysisforSolarEnergy
ConversionandEnvironmentalProtection 253
10 SensitizationofTiO byDyes:AWaytoExtendtheRangeof
2
PhotocatalyticActivityofTiO totheVisibleRegion 255
2
MartaI.Litter,EnriqueSanRomán,thelateMaríaA.Grela,JorgeM.Meichtry,
andHernánB.Rodríguez
10.1 Introduction 255
10.2 MechanismsInvolvedintheUseofDye-ModifiedTiO Materialsfor
2
TransformationofPollutantsandHydrogenProductionunderVisible
Irradiation 256
10.3 UseofDye-ModifiedTiO MaterialsforEnergyConversionin
2
Dye-SensitizedSolarCells 260
10.4 Self-SensitizedDegradationofDyePollutants 262
10.5 UseofDye-ModifiedTiO forVisible-Light-AssistedDegradationof
2
ColorlessPollutants 265
10.6 WaterSplittingandHydrogenProductionusingDye-ModifiedTiO
2
PhotocatalystsunderVisibleLight 269
10.7 Conclusions 270
Acknowledgement 271
References 271
11 AdvancesintheDevelopmentofNovelPhotocatalystsfor
Detoxification 283
CiaraByrne,MichaelNolan,SwagataBanerjee,HoneyJohn,SheethuJose,
PradeepanPeriyat,andSureshC.Pillai
11.1 Introduction 283
11.2 TheoreticalStudiesofPhotocatalysis 285
11.2.1 DopingandSurfaceModificationofTiO forBandgap
2
Engineering 285
11.2.2 AlignmentofValenceandConductionBandEdgeswithWater
OxidationandReductionPotentials 291
11.2.3 ElectronandHoleLocalization 293
11.3 Metal-DopedPhotocatalystsforDetoxification 296
11.3.1 High-TemperatureStableAnataseTiO Photocatalyst 296
2
11.3.2 MainGroupMetalIonsonAnataseStabilityandPhotocatalytic
Activity 296
11.3.3 EffectofTransitionMetalsonAnataseStabilityandPhotocatalytic
Activity 296
Description:A comprehensive and timely overview of this important and hot topic, with special emphasis placed on environmental applications and the potential for solar light harvesting. Following introductory chapters on environmental photocatalysis, water splitting, and applications in synthetic chemistry, fur