Table Of ContentUnsteady Computational Fluid Dynamics
in Aeronautics
FLUID MECHANICS AND ITS APPLICATIONS
Volume104
SeriesEditor: AndreTHESS
DepartmentonMechanicalEngineering
IlmenauUniversityofTechnology
98684Ilmenau,Germany
AimsandScopeoftheSeries
Thepurposeofthisseriesistofocusonsubjectsinwhichfluidmechanicsplaysa
fundamentalrole.
As well as the more traditional applications of aeronautics, hydraulics, heat and
masstransferetc.,bookswillbepublisheddealingwithtopicswhicharecurrently
in a state of rapid development, such as turbulence, suspensions and multiphase
fluids,superandhypersonicflowsandnumericalmodelingtechniques.
It is a widely held view that it is the interdisciplinary subjects that will receive
intensescientificattention,bringingthemtotheforefrontoftechnologicaladvance-
ment. Fluids have the ability to transport matter and its properties as well as to
transmit force, therefore fluid mechanics is a subject that is particularly open to
crossfertilizationwithothersciencesanddisciplinesofengineering.Thesubjectof
fluidmechanicswillbehighlyrelevantindomainssuchaschemical,metallurgical,
biologicalandecologicalengineering.Thisseriesisparticularlyopentosuchnew
multidisciplinarydomains.
The median level of presentation is the first year graduate student. Some texts are
monographsdefiningthecurrentstateofafield;othersareaccessibletofinalyear
undergraduates;butessentiallytheemphasisisonreadabilityandclarity.
Forfurthervolumes:
www.springer.com/series/5980
P.G. Tucker
Unsteady
Computational
Fluid Dynamics
in Aeronautics
P.G.Tucker
DepartmentofEngineering
WhittleLaboratory
UniversityofCambridge
Cambridge,UK
ISSN0926-5112 FluidMechanicsandItsApplications
ISBN978-94-007-7048-5 ISBN978-94-007-7049-2(eBook)
DOI10.1007/978-94-007-7049-2
SpringerDordrechtHeidelbergNewYorkLondon
LibraryofCongressControlNumber:2013945727
©SpringerScience+BusinessMediaDordrecht2014
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof
thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,
broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation
storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology
nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.
PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations
areliabletoprosecutionundertherespectiveCopyrightLaw.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub-
lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany
errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect
tothematerialcontainedherein.
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
To myFamily
Preface
In2001Ipublished‘ComputationofUnsteadyInternalFlows’.Thistextwaslargely
basedaroundincompressibleflowsolvermethodsandhencetypicallylowerspeed
flows. The key premise behind the original text was that, in some sense, most en-
gineeringflowsareintrinsicallyunsteady(evenifjustduetoturbulence).However,
becauseofcomputationalexpense,thisaspectisoftenignored.Ofcoursecomputing
powercontinuestorise.TheuseofGraphicalProcessorUnitsfornumberprocess-
ingisshowingpromisewithrivaltechnologiesbeginningtoemerge.
DetachedEddySimulationandrelatededdyresolvingmethodshaveaddedim-
petustotheuseofunsteadyComputationalFluidDynamics.Simulationsthatpoten-
tiallyrivaltremendouslyexpensiverig/windtunneltestsarenowappearing.Ano-
table shoot from this emerging era is work around 2007 at the US Airforce Lab-
oratory, who performed DES for a F/A-18 fighter configuration. Tail buffet was
exploredandsuccessfulcomparisonmadewithrealflightdata(intermsofspectral
shape of surface pressure data). This situation was not unforeseen. Around 1975,
Chapman, Director of Aeronautics at NASA, proposed, using well founded scien-
tific arguments,1 that when computers reached 1014 flops, eddy resolving simula-
tions that could rival aerodynamic tests would emerge. Modern high performance
computingprovisionnowexceedsChapman’sexpectations,reachingPetascaleand
beyond. Hence, now the ability to directly predict turbulence, for complex engi-
neeringsystems,withoutrecoursetoaccuracyreducingassumptionsbecomesever
closer—even if advances in solver technology have not been as extensive as per-
haps expected by Chapman. The current text focuses on aerospace. Hence, unlike
theformer,italsoincludesdiscussionofcompressibleflowtechnology.
With the projected demand for air transport set to double the world aircraft
fleet by 2020 it is becoming urgent to take steps to reduce environmental im-
pact with respect to noise and other emissions. Hence, the current text, hopefully,
will contribute, in some sense, to the quest to use computers to improve aircraft
1Note,Chapman’souterboundarylayerscalingsareoptimisticbutthisaspectislesscriticalthan
theinnerscalings.
vii
viii Preface
and thus impact on this pressing environmental need. To make major technologi-
calbreakthroughs,ultimately,extremelycloseairframeandengineintegrationwill
be needed. This gives the requirement for coupled engine-airframe simulations.
Also, increasingly multi-physics simulations will be required. Such endeavors do
not marry well with the obvious accuracy benefits provided by making turbulent
eddy-resolvingsimulations.Hence,thistextattemptstoexplorethesetensions.
Inpreparingthetext,greatefforthasbeenmadetoremoveerrorsofatypograph-
icalnature.Apologiesfortheerrorsthataredoubtlessfound.
I would like to express my gratitude to past Researchers who have helped run
manyofthesimulationscontainedinthistext.Especialthanksareduetomylongest
servingteammembers—Drs.R.Jefferson-LovedayandJ.Tyacke.
TheoriginaltextwaspreparedinWORD.ThenVadlamaniNagabhushanaRao
leadanintrepidteamwhokindlyconvertedthetexttoLATEX,properlylinkingrefer-
encesfiguresandequationstothetext.IamverygratefultotheLATEXteam:Ahmed
Al-Shabab;ZaibAli,JiahuanCui,MahakMahak;JamesPage;VadlamaniNagab-
hushanaRao,RobertWatsonandXiaoyuYang.
Cambridge,UK PaulG.Tucker
January2013
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 AerospaceChallenges . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 LargeScaleSimulations . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 ComputationalCost . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 UnsteadyFlowSources . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.1 Turbomachinery . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 UnsteadyFlowandAirframes . . . . . . . . . . . . . . . . 21
1.5 PredictiveAccuracyofRANS . . . . . . . . . . . . . . . . . . . . 25
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2 ComputationalMethodsforUnsteadyFlows . . . . . . . . . . . . . . 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 OverviewofTemporalDiscretizations . . . . . . . . . . . . . . . 33
2.3 TemporalProfileAssumptionsforVariables . . . . . . . . . . . . 34
2.3.1 DependentVariableChangeswithTime . . . . . . . . . . 34
2.3.2 SpatialVariationoftheTimeDerivative . . . . . . . . . . 35
2.4 Two-LevelSchemes . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 GeneralExplicitSchemes . . . . . . . . . . . . . . . . . . 36
2.5 Higher-LevelSchemes . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.1 GearSchemes . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 OtherTemporalDiscretizationMethods. . . . . . . . . . . . . . . 38
2.7 ElementarySolutionAdaptedTime-StepApproaches . . . . . . . 41
2.7.1 RelatingErrorEstimatetoNewTime-Steps . . . . . . . . 42
2.7.2 AlternativeTechniques . . . . . . . . . . . . . . . . . . . 43
2.8 UnsteadyAdjointandTimeStepAdaptation . . . . . . . . . . . . 43
2.8.1 AdjointMethodsforUnsteadyFlowDesignOptimization . 45
2.9 TemporalAdaptationUsingSpace-TimeElements/Volumes . . . . 45
2.10 ConvectiveSchemesforUnsteadyFlow. . . . . . . . . . . . . . . 47
2.11 ClassicalHigh-OrderApproaches . . . . . . . . . . . . . . . . . . 48
ix
x Contents
2.11.1 CompactSchemes . . . . . . . . . . . . . . . . . . . . . . 48
2.11.2 DiscontinuousGalerkinScheme. . . . . . . . . . . . . . . 50
2.11.3 SpectralDifference,VolumeandCPRMethods . . . . . . 51
2.11.4 ENO/WENO . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.12 HighResolutionSpatialSchemes . . . . . . . . . . . . . . . . . . 52
2.12.1 DRPSchemes . . . . . . . . . . . . . . . . . . . . . . . . 52
2.12.2 CABARET . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.13 ConvectiveSchemesforDensityBasedSolvers
andRelatedAspects . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.13.1 TheMUSCLScheme . . . . . . . . . . . . . . . . . . . . 56
2.13.2 Monotonicity. . . . . . . . . . . . . . . . . . . . . . . . . 58
2.14 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.15 SpatialOrderandSolutionAccuracy . . . . . . . . . . . . . . . . 60
2.15.1 GridStretching. . . . . . . . . . . . . . . . . . . . . . . . 62
2.15.2 HighOrderUpwinding . . . . . . . . . . . . . . . . . . . 64
2.15.3 AliasingandNumericalOrder . . . . . . . . . . . . . . . . 64
2.16 SmoothingControl . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.16.1 ShocksandLES . . . . . . . . . . . . . . . . . . . . . . . 69
2.17 MeshRelatedTechniques . . . . . . . . . . . . . . . . . . . . . . 69
2.17.1 BodyFittedGrids . . . . . . . . . . . . . . . . . . . . . . 70
2.17.2 OversetGrids . . . . . . . . . . . . . . . . . . . . . . . . 72
2.18 TheSubstantialDerivative . . . . . . . . . . . . . . . . . . . . . . 73
2.19 SimultaneousEquationSolution. . . . . . . . . . . . . . . . . . . 75
2.20 EvaluationofthePressureField . . . . . . . . . . . . . . . . . . . 76
2.20.1 PressureSubcycling . . . . . . . . . . . . . . . . . . . . . 76
2.20.2 Pressure-VelocityCoupling . . . . . . . . . . . . . . . . . 77
2.20.3 CompressibleFlowSolversandPressureRecovery. . . . . 78
2.21 BoundaryConditions . . . . . . . . . . . . . . . . . . . . . . . . 79
2.22 ImpactofGridTopologyonSolutionAccuracy. . . . . . . . . . . 81
2.23 FrequencyofUseofDifferentNumericalApproaches . . . . . . . 85
2.24 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3 TurbulenceandItsModelling . . . . . . . . . . . . . . . . . . . . . . 93
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.2 AveragingProcedures . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2.1 TimeBasedAveraging. . . . . . . . . . . . . . . . . . . . 94
3.2.2 SpatialAveraging/Filtering . . . . . . . . . . . . . . . . . 96
3.2.3 DiscreteSpatialFilters. . . . . . . . . . . . . . . . . . . . 98
3.3 GoverningAveragedEquations . . . . . . . . . . . . . . . . . . . 99
3.3.1 (U)RANSEquations . . . . . . . . . . . . . . . . . . . . . 99
3.3.2 LESEquations . . . . . . . . . . . . . . . . . . . . . . . . 99
3.4 VLES/URANSModelling . . . . . . . . . . . . . . . . . . . . . . 100
3.5 (I)LESandDNS . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.5.1 FunctionalModels . . . . . . . . . . . . . . . . . . . . . . 103
3.5.2 StructuralModels . . . . . . . . . . . . . . . . . . . . . . 107
Description:The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are d