Table Of ContentUC San Diego
UC San Diego Electronic Theses and Dissertations
Title
Acquiring latent linguistic structure using computational models
Permalink
https://escholarship.org/uc/item/0tx98383
Author
Doyle, Gabriel R.
Publication Date
2014
Peer reviewed|Thesis/dissertation
eScholarship.org Powered by the California Digital Library
University of California
UNIVERSITYOFCALIFORNIA,SANDIEGO
Acquiringlatentlinguisticstructureusingcomputationalmodels
Adissertationsubmittedinpartialsatisfactionofthe
requirementsforthedegreeofDoctorofPhilosophy
in
Linguistics
by
GabrielR.Doyle
Committeeincharge:
ProfessorRogerLevy,Chair
ProfessorEricBakovic
ProfessorDavidBarner
ProfessorCharlesElkan
ProfessorAndrewKehler
2014
Copyright
GabrielR.Doyle,2014
Allrightsreserved.
The Dissertation of Gabriel R. Doyle is approved and is acceptable in
qualityandformforpublicationonmicrofilmandelectronically:
Chair
UniversityofCalifornia,SanDiego
2014
iii
TABLEOFCONTENTS
SignaturePage........................................................ iii
TableofContents ..................................................... iv
ListofFigures ........................................................ vii
ListofTables ......................................................... viii
Acknowledgements.................................................... ix
Vita ................................................................. xii
AbstractoftheDissertation ............................................. xiii
Chapter1 Introduction ............................................... 1
1.1 ComputationalModels ......................................... 3
1.2 Thelearningproblem .......................................... 6
1.3 AssessingComputationalModels ................................ 8
1.4 Overviewofthemodels ........................................ 13
1.4.1 Chapter2: ConstraintAcquisitionwithoutPhonologicalStructure 14
1.4.2 Chapter3: ConstraintAcquisitionwithPhonologicalStructure . 14
1.4.3 Chapter4: Multiple-CueWordSegmentation................ 15
1.4.4 Chapter5: BurstinessinTopicModels ..................... 16
Chapter2 Nonparametric learning of phonological constraints in Optimality
Theory.................................................... 17
2.1 Introduction .................................................. 17
2.2 PhonologyandOptimalityTheory................................ 19
2.2.1 OTstructure ........................................... 19
2.2.2 OTasaweighted-constraintmethod ....................... 20
2.2.3 OTinpractice .......................................... 21
2.2.4 LearningConstraints .................................... 22
2.3 TheIBPOTModel............................................. 24
2.3.1 Structure .............................................. 24
2.3.2 Inference .............................................. 25
2.4 Experiment................................................... 27
2.4.1 Wolofvowelharmony ................................... 27
2.4.2 ExperimentDesign...................................... 29
2.4.3 Results................................................ 30
2.5 DiscussionandFutureWork .................................... 33
2.5.1 Relationtophonotacticlearning........................... 33
2.5.2 Extendingthelearningmodel ............................. 34
iv
2.6 Conclusion ................................................... 35
2.7 Acknowledgments............................................. 35
Chapter3 Data-drivenacquisitionofphonologicalconstraintswithunderlying
phonologicalstructure....................................... 37
3.1 Introduction .................................................. 38
3.2 PhonologicalAcquisition ....................................... 39
3.2.1 Constraint-BasedPhonology.............................. 39
3.2.2 Constraintstructuresandtheiracquisition................... 40
3.2.3 Previousemergentistmodels.............................. 43
3.3 Modeldesign ................................................. 45
3.3.1 Generalstructure ....................................... 45
3.3.2 Constraintgrammarandviolationprofiles .................. 47
3.3.3 InferenceonM andw ................................... 48
3.3.4 Inferenceovertheconstraintdefinitions .................... 51
3.4 Experiment................................................... 54
3.4.1 Englishregularpluralmorphophonology ................... 54
3.4.2 Theconstraintgrammar.................................. 55
3.4.3 Modelparameters....................................... 58
3.5 Results ...................................................... 59
3.5.1 Observedforms ........................................ 60
3.5.2 Predictivebehavior...................................... 61
3.5.3 ViolationProfilesandConstraintDefinitions ................ 63
3.5.4 ExperimentSummary ................................... 67
3.6 DiscussionandFutureDirections ................................ 67
3.6.1 Expansionoftheemergentistview......................... 67
3.6.2 Thenatureoftheunderlyingrepresentation ................. 68
3.6.3 Extendingthemodel .................................... 69
3.7 Conclusion ................................................... 71
Chapter4 CombiningmultipleinformationtypesinBayesianwordsegmentation 73
4.1 Introduction .................................................. 73
4.2 Previouswork ................................................ 74
4.2.1 Goldwateretal(2006)................................... 74
4.2.2 Acognitively-plausiblevariant............................ 76
4.2.3 Othermultiple-cuemodels ............................... 77
4.3 Modeldesign ................................................. 77
4.3.1 Onsyllabificationandstress .............................. 78
4.4 Data......................................................... 80
4.5 Experiments .................................................. 81
4.5.1 Parametersetting ....................................... 81
4.5.2 Stressimprovesperformance ............................. 81
4.5.3 Areisolatedwordsnecessary? ............................ 84
v
4.5.4 Boundedrationalityinhumansegmentation ................. 85
4.6 Futurework .................................................. 89
4.7 Conclusion ................................................... 91
4.8 Acknowledgments............................................. 91
Chapter5 Accountingforburstinessintopicmodels ...................... 92
5.1 Introduction .................................................. 92
5.2 OverviewofModels ........................................... 94
5.2.1 LatentDirichletallocation(LDA) ......................... 94
5.2.2 Dirichletcompoundmultinomial(DCM) ................... 96
5.2.3 DCMLDA ............................................. 98
5.3 MethodsofInference .......................................... 99
5.4 ExperimentalDesign........................................... 103
5.5 EmpiricalLikelihood .......................................... 104
5.6 Results ...................................................... 107
5.7 Discussion ................................................... 110
5.8 Acknowledgments............................................. 110
Chapter6 Conclusion ................................................ 112
References ........................................................... 114
vi
LISTOFFIGURES
Figure2.1. TableauxofWolofinputforms. ............................. 21
Figure2.2. Wolof violation profiles for phonologically standard constraint
definitions. .............................................. 31
Figure3.1. Exampletree-structureswithintheRROTconstraintCFG. ...... 58
Figure4.1. Percentageofrunssegmentedwiththestressbiasasbiasvaries... 87
Figure5.1. LDAandDCMLDAgraphicalmodels........................ 96
Figure5.2. Mean per-document log-likelihood on the S&P 500 dataset for
DCMLDAandfittedLDAmodels. .......................... 108
Figure5.3. Meanper-documentlog-likelihoodontheNIPSdatasetforDCMLDA
andLDAmodels.......................................... 109
vii
LISTOFTABLES
Table2.1. IBPOTlog-probabilities. ................................... 30
Table3.1. Ruleswithinthephonologicalcontext-freegrammarforRROT. ... 56
Table3.2. Phonemesandtheirfeaturevalues. ........................... 57
Table3.3. RROTlog-probabilities. .................................... 60
Table3.4. RROTpredictiveprobabilities................................ 62
Table3.5. LikelyRROTconstraintdefinitions. .......................... 64
Table4.1. Multiple-cueEnglishcorpusstresspatternsbytypesandtokens. .. 80
Table4.2. Precision,recall,andF-scoreovercorporawithandwithoutstress
informationavailable. ...................................... 82
Table4.3. Examplesofsegmentinganartificiallanguageaccordingtotransi-
tionprobabilities(top)orstressbias(bottom)................... 86
Table5.1. Sampletopics foundbya20-topic DCMLDAmodeltrainedon the
S&P500dataset. .......................................... 106
Table5.2. Sampletopicsfoundby a20-topicLDAmodeltrainedonthe S&P
500dataset. .............................................. 106
viii
ACKNOWLEDGEMENTS
There’s a part at the end of Norton Juster’s classic “The Phantom Tollbooth”
wherethe herohasreturnedfrom adifficultquestand askshispatronsabout asecretthat
theycouldnottellhimbeforehefinishedthequest. Hispatrons,representingtherealms
oflanguageandmathematics,replyoff-handedlythatthetaskwasimpossible–“butif
we’dtoldyouthen,youmightnothavegone–and,asyou’vediscovered,somanythings
arepossiblejustaslongasyoudon’tknowthey’reimpossible.”
That line stuck with me long before I actually understood it. I think I do now,
thanksmostprominentlytothreepeople. Thefirsttwoaremyparents,Karen&Mike,
who alwaystreated it asthe most naturalthing inthe world thatsomeone from afamily
withaspottyacademicrecordshouldwanttogetadoctorate,anddidanythingtheycould
to help get me there (or wherever else I would have hoped to end up). Their endless
supportofandbeliefinmeledtothisdissertation.
Theother personwho’shammered homeJuster’spoint hasbeen myadvisor and
committeechair,RogerLevy,whoalwaysmanagestomakeitseemthattheworkyou’re
tryingtodoiswellwithinyourgrasp,evenifitisn’t,andconvincesyoutogoalittlebit
further, even if that’s impossible. I couldn’t have ended up in a better place or with a
betteradvisor.
Iowedeepthankstotherestofmycommitteeaswell: EricBakovic´,DaveBarner,
CharlesElkan, andAndyKehler– aswellasRachel Mayberry, whowasonmy original
committee before the topic shifted – who never failed to provide ideas, inspirations,
and helpful inquisitions along a very winding research path. They were contagiously
enthusiasticindiscussionsevenwhen Iwaswornout,andtheirabilitytoremindme of
thephilosophicalforestwhenI’dgetstuckontreeswasessential.
Themembers,pastandpresent,oftheComputationalPsycholinguisticsLabare
alsoabigpartofthisdissertation,throughmany,manydiscussionsoflanguageandmath
ix
Description:This dissertation investigates the acquisition of latent linguistic structure using computational models, across a variety of linguistic structures and covering both appli- cations and psycholinguistic facets. Chapters 2 and 3 build models for the acquisition of phonological constraints from data,