Table Of ContentConference Proceedings of the Society for Experimental Mechanics Series
Michael Mains · J.R. Blough Editors
Topics in Modal
Analysis & Testing,
Volume 10
Proceedings of the 35th IMAC, A Conference and Exposition
on Structural Dynamics 2017
Conference Proceedings of the Society for Experimental Mechanics Series
SeriesEditor
KristinB.Zimmerman,Ph.D.
SocietyforExperimentalMechanics,Inc.,
Bethel,CT,USA
Moreinformationaboutthisseriesathttp://www.springer.com/series/8922
Michael Mains • J.R. Blough
Editors
Topics in Modal Analysis & Testing,
Volume 10
Proceedings of the 35th IMAC, A Conference and Exposition
on Structural Dynamics 2017
123
Editors
MichaelMains J.R.Blough
ApplicationSolutions-StructuralAnalysis MichiganTechnologicalUniversity
Brüel&Kjær Houghton,MI,USA
Cincinnati,OH,USA
ISSN2191-5644 ISSN2191-5652 (electronic)
ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries
ISBN978-3-319-54809-8 ISBN978-3-319-54810-4 (eBook)
DOI10.1007/978-3-319-54810-4
LibraryofCongressControlNumber:2017935404
©TheSocietyforExperimentalMechanics,Inc.2017
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherights
oftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor
informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific
statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedate
ofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorfor
anyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutional
affiliations.
Printedonacid-freepaper
ThisSpringerimprintispublishedbySpringerNature
TheregisteredcompanyisSpringerInternationalPublishingAG
Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
Preface
Topics in Modal Analysis & Testing represents one of ten volumes of technical papers presented at the 35th IMAC, A
Conference and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics, and held in
GardenGrove,California,January30–February2,2017.ThefullproceedingsalsoincludevolumesonNonlinearDynamics;
DynamicsofCivilStructures;ModelValidationandUncertaintyQuantification;DynamicsofCoupledStructures;Sensors
andInstrumentation;SpecialTopicsinStructuralDynamics;StructuralHealthMonitoring&DamageDetection;Rotating
Machinery, Hybrid Test Methods, Vibro-Acoustics and Laser Vibrometry; and Shock & Vibration, Aircraft/Aerospace and
EnergyHarvesting.
Eachcollectionpresentsearlyfindingsfromexperimentalandcomputationalinvestigationsonanimportantareawithin
Structural Dynamics. Topics in Modal Analysis & Testing represents papers on enabling technologies for Modal Analysis
measurementsandapplicationsofModalAnalysisinspecificapplicationareas.
Theorganizerswouldliketothanktheauthors,presenters,sessionorganizers,andsessionchairsfortheirparticipationin
thistrack.
Cincinnati,OH,USA M.Mains
Houghton,MI,USA J.R.Blough
v
Contents
1 Fluid-StructureInteractioninaLabyrinthGasSealCoupledtoaFlexibleStator.............................. 1
A.Dairien,F.Thouverez,L.Blanc,P.Héliès,andJ.Dehouve
2 ModalAnalysisofTowerCranewithCracksbytheDynamicStiffnessMethod ................................ 11
DangXuanTrongandNguyenTienKhiem
3 High-NoiseHigh-SpeedFootageDatainExperimentalModalAnalysis.......................................... 23
JakaJavh,JankoSlavicˇ,andMihaBoltežar
4 Morlet-WaveDampingIdentification:ApplicationtoHigh-SpeedVideo......................................... 27
JankoSlavicˇ,MarkoMihalec,JakaJavh,andMihaBoltežar
5 Fluid-CoupledVibrationControlInspiredbyDragonflyWings................................................... 31
YunjieWang,YajunYin,andGangtieZheng
6 ImprovingModalParameterEstimationbyComplementaryOutput–OutputRelations....................... 37
OscarOlarteandPatrickGuillaume
7 OperationalModalAnalysisinFrequencyDomainUsingGaussianMixtureModels........................... 47
AnkitChiplunkarandJosephMorlier
8 UnderstandingModalVectors ......................................................................................... 55
GeorgeFoxLang
9 BestPracticesforUsingOrder-BasedModalAnalysisforIndustrialApplications.............................. 69
EmilioDiLorenzo,SimoneManzato,BartPeeters,FrancescoMarulo,andWimDesmet
10 CouldtheVeeringPhenomenonbeaMechanicalDesignInstrument? ........................................... 85
CarloRosso,ElvioBonisoli,andFabioBruzzone
11 ImpulseExcitationofPiezoelectricPatchActuatorsforModalAnalysis......................................... 97
V.Ruffini,T.Nauman,andC.W.Schwingshackl
12 ModalParameterEstimationinMulti-PatchOperationalModalAnalysis:PerspectivesandApproaches .. 107
D.MironovsandS.Chauhan
13 ModelingandNonlinearParameterIdentificationofanElectric-PowerSteeringSystem...................... 127
CassioT.Faria,GiorgioPulvirenti,andTheoGeluk
14 AFrameworkforAdditiveManufacturingProcessMonitoring&Control...................................... 137
IanT.Cummings,MeganE.Bax,IvanJ.Fuller,AdamJ.Wachtor,andJohnD.Bernardin
15 ReliabilityofUsingStereoPhotogrammetrytoEstimateModalParameters.................................... 147
DaniloDamascenoSabino,PeymanPoozesh,JoaoAntonioPereira,andChristopherNiezrecki
16 ConstantMassMetastructurewithVibrationAbsorbersofLinearlyVaryingNaturalFrequencies.......... 153
KatherineK.ReichlandDanielJ.Inman
vii
viii Contents
17 StudyonRandomDecrementSignatureUnderDifferentTriggeringLevelandLengthofTimeHistory.... 159
JinzhiWu,XiujuanZheng,JieHu,YigangZhang,andFuh-GwoYuan
18 Experimental Study on the Rotor Dynamics Influence Upon the Modal Characteristics
ofanInductionMachine................................................................................................ 167
F.Chauvicourt,M.Ballweg,W.Desmet,H.VanderAuweraer,andC.T. Faria
19 OptimalModalParameterEstimationforHighlyChallengingIndustrialCases................................ 173
MahmoudEl-Kafafy,BartPeeters,andPatrickGuillaume
Chapter 1
Fluid-Structure Interaction in a Labyrinth Gas Seal Coupled
to a Flexible Stator
A.Dairien,F.Thouverez,L.Blanc,P.Héliès,andJ.Dehouve
Abstract Thispaperdealswiththepredictionofaeroelasticinstabilitiesoccuringinlabyrinthgassealofturbomachinery
components. The purpose of this work is to carry out a numerical investigation on an advanced labyrinth gas seal model
comprising a non-deformable rotor, and a flexible stator. The flexibility of the static part induces pressure and velocity
fluctuationswithintheleakageflow.Themodelretainsseveralcavitiesformedbytheteethlocatedontheshaftandastrong
couplingbetweenthefluidandthestructureisassumed.
Aqualitativeanalysisisperformedtoidentifythevariouscausesofaeroelasticinstabilityoccurence.Then,acomparison
withtheliteratureiscarriedoutinordertoproposeabetterapproachtopredictsuchinstabilities.
Keywords Fluid-structurecoupling (cid:129) Labyrinthgasseal (cid:129) Turbomachinery (cid:129) Aeroelasticinstability (cid:129) Nonlinearity
Nomenclature
t Timevariable
n NumberofharmonicsoftheFourierseries
i Cavitynumber
(cid:2) Orderparameter
(cid:3) Angularposition
R Shaftradius
s
R Statorradius
c
y Linearfunction
i
y1i Periodicfunction
xc Timecoefficientassociatedtocosinefunction
n;i
xs Timecoefficientassociatedtosinefunction
n;i
M Massmatrixofthelinearsystem
C Viscousdampingmatrixoflinearsystem
K Linearstiffnessmatrixofthelinearsystem
XR Coefficientsvectordifferentiatedtwicewithrespecttotime
A.Dairien((cid:2))
ÉcoleCentraledeLyon,LaboratoiredeTribologieetDynamiquedesSystémes,UMR-CNRS5513,36avenueGuydeCollongue,
69134ÉcullyCedex,France
AirbusSafranLaunchers,ForêtdeVernon,BP802,27208VernonCedex,France
e-mail:[email protected]
F.Thouverez(cid:129)L.Blanc
ÉcoleCentraledeLyon,LaboratoiredeTribologieetDynamiquedesSystémes,UMR-CNRS5513,36avenueGuydeCollongue,
69134ÉcullyCedex,France
P.Héliès
AirbusSafranLaunchers,ForêtdeVernon,BP802,27208VernonCedex,France
J.Dehouve
CentreNationald’ÉtudesSpatiales,DirectiondesLanceurs,52,rueJacquesHillairet,75612ParisCedex,France
©TheSocietyforExperimentalMechanics,Inc.2017 1
M.Mains,J.R.Blough(eds.),TopicsinModalAnalysis&Testing,Volume10,ConferenceProceedings
oftheSocietyforExperimentalMechanicsSeries,DOI10.1007/978-3-319-54810-4_1
2 A.Dairienetal.
XP Coefficientsvectordifferentiatedoncewithrespecttotime
X Coefficientsvectorinthetimedomain
f Acousticfrequency
ac
c Soundvelocity
1.1 Introduction
Aerospaceturbopumpsusuallyuselabyrinthgassealstopreventthegasdrivingtheturbinetoleakinthegapbetweenthe
rotorandthestatorparts.Currenttrendsinturbopumpsdesignfocusontheminimizationoftheclearances,soastooptimise
theefficiency,andonthereductionofthestatorweight.However,thesetrendsmayleadtoaeroelasticinstabilityissueswhich
candamagethestructuressurroundingthelabyrinthgasseal,mainlystaticpartsaccordingtopost-mortemobservations.
Sincethe1960s,studieshavebeencarriedouttobetterunderstandandpreventsuchinstabilities.Alford[2]wasthefirst
to show that the side support location of the seal has an importance in preventing self-excited vibrations. Alford discloses
alsoastabilitycriterionwhichcorrelatespressuredropinthesealtonaturalfrequency,weight,andlength.Asecondcriterion
islatersuggestedbyAbbot[1],involvingthelocationofsidesupport.Hisworkrevealsthatifthesupportislocatedonthe
highpressureside,thesealisstableaslongasthemechanicalfrequencyislowerthantheacousticone.Thephenomenonis
reversedwhensupportislocatedonthelowpressureside.
Totacklethesenewchallenges,morepredictivemodelsmustbedevelopedinordertotakethestatorflexibilityandthe
leakages reduction issues into account. The purpose of this work is to carry out a numerical investigation on an advanced
labyrinth gas seal model involving a non-deformable rotor, and a flexible stator. The flexibility of the static part induces
pressureandvelocityfluctuationswithintheleakageflow.Themodelretainsseveralcavitiesdefinedbytheteethlocatedon
theshaftandastrongcouplingbetweenthefluidandthestructureisassumed.
1.2 StrongFluid-Structure Coupling
The model governing the behaviour of the flow within a cavity is inspired by Childs analytical model and Navier-Stokes
equations [3]. The model describing the flow is then coupled to a mechanical system corresponding to a flexible stator
(cf. Fig. 1.1b). A cylinder model, which takes into account the diameter modes in the plane orthogonal to the flow and a
normalizedlongitudinaldisplacementfollowingthefirstbendingmode,isused(cf.Fig.1.1c).Thenormalizedlongitudinal
displacement is assumed to be proportional to the square of the distance from the bearing location. Assuming a strong
couplingimpliesthattheactionofthefluidtothestructureistakenintoaccountandconversely.Itisespeciallyinteresting
toworkwithastrongcouplingforasuchconfinedenvironment.
y
y
x x
2Rs 2Rs
2Rc mean2Rc
(a) (b) (c)
Fig.1.1 (a)Childs’smodel:ellipticmovementoftherotor,non-deformablerotor,non-deformablestator.(b)Flexiblecylindermodel:fixedand
non-deformablerotor,fixedandflexiblestator.(c)Flexiblecylindermodel:visualisationofnormalizedlongitudinaldisplacementfollowingthe
firstbendingmode
1 Fluid-StructureInteractioninaLabyrinthGasSealCoupledtoaFlexibleStator 3
Thestructurecanbesupportedonthelowpressuresideaswellasonthehighpressureside.Takingintoaccount these
boundaryconditionsallowsacomparisonwiththeresultsgivenbyAbbott[1].
Thecoupledsystemobtainedismadeofnonlineardifferentialequations.Toovercomethesenonlinearities,aperturbation
methodisused.Itconsistindeterminingapproximatesolutionsofthenonlinearequationsbyapowerseriesofascalefactor
parameter((cid:2))associatedtothenonlineartermsandtruncatedatthefirstorder.Thismethodallowstoturnanonlinearsystem
intoasetoflinearproblems.Thesolutioncanbewrittenasfollow:
yi.N;t;(cid:3)/Dy0iC(cid:2)y1i.N;t;(cid:3)/ (1.1)
wheretheperiodicfunctiony1i issoughtintheform:
XN (cid:2) (cid:3)
y1i.N;t;(cid:3)/D xnc;i.t/cos.n(cid:3)/Cxns;i.t/sin.n(cid:3)/ (1.2)
nD1
withn,correspondingtothenumberofharmonicsoftheFourierseries,ithecavitynumber,(cid:3) theangularposition.Atzeroth
order ((cid:2) D 0), the nonlinear differential equations become state equations describing the mean leakage flow, pressure and
circumferentialvelocitywithintheseal(withoutanystatordisplacement).Theflowbecomessonicjustaftergoingthrough
thelasttooth.Then,atfirstorder,thesystemissolvedbyreplacingthevariabley1ibyitsexpression(1.2),andsearchingfor
the values fxn;i;xn;ig. These coefficients are related to three variables : radial displacement, circumferential velocities, and
pressureswithincavities.
Tosolvethistwo-dimensionalproblem,aGalerkinapproachwithaFouriertransformwithrespecttothespacevariables,
isused.Thesystemcanbedescribedbythesecondorderhomogeneousdifferentialequation:
MXR CCXP CKX D0 (1.3)
whereXisthecoefficientsvectorfxc ;xs gwithnD1;:::;NcorrespondingtothetrigonometricfunctionsinEq.(1.2).
n;i n;i
The model comprises a pre-rotating flow which can be combined with the axial leakage flow, in addition to the shaft
rotation.Becauseofthecircumferentialvelocitywithineachsealcavity,shearstressincircumferentialdirectionareacting
onbothstatorandrotorwalls.Inthiswork,themodelisextendedtoseveralcavities.Theupstreamanddownstreamcavities
modalparticipationsareconsideredwithinthenthcavityequations
1.3 ValidationoftheZeroth Order
Thetablebelow(cf.Table1.1)givesanaxialmassflowratecomparisonbetweencurrentworkandcalculationsfoundinthe
literatureforvalidationpurposes(Fig.1.2).
Table1.1 Comparativeaxialmassflowrateandpressuresdistributionswithinthelabyrinth
seal
Currentwork Dursen[4] Rosen[6] Experimental[4]
Massflowrate(kgs(cid:2)1) 0:02036 0:02072 0:02117 0:02
Pressurewithincavity(kPa) 225:447 224:592 222:781 222:5
Seal operating conditions Seal geometry
Inlet pressure 241.3 kPa No. of teeth 2
Outlet pressure 206.8 kPa Shaft radius 101.60 mm
Inlet temperature 298.2 K Clearance 0.16 mm
Inlet swirl velocity 16.8 m/s Tooth pitch 12.91 mm
Shaft rotational speed 1800 rpm Tooth height 5.03 mm
Tooth tip width 0.20 mm
Fig.1.2 Sealgeometryandstudyconditions[4]
Description:Topics in Modal Analysis & Testing, Volume 10: Proceedings of the 35th IMAC,A Conference and Exposition on Structural Dynamics, 2017, the tenth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings a