Table Of ContentA. K. Nayak · Bal Raj Sehgal Editors
Thorium—
Energy for
the Future
Select Papers from ThEC15
—
Thorium Energy for the Future
A. K. Nayak Bal Raj Sehgal
(cid:129)
Editors
—
Thorium Energy
for the Future
Select Papers from ThEC15
123
Editors
A.K.Nayak BalRajSehgal
ThermalHydraulics Section, Reactor Nuclear Power SafetyDivision, AlbaNova
EngineeringDivision RoyalInstitute ofTechnology
Bhabha Atomic Research Centre Stockholm, Sweden
Mumbai,Maharashtra, India
ISBN978-981-13-2657-8 ISBN978-981-13-2658-5 (eBook)
https://doi.org/10.1007/978-981-13-2658-5
LibraryofCongressControlNumber:2018955175
©SpringerNatureSingaporePteLtd.2019
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar
methodologynowknownorhereafterdeveloped.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom
therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd.
Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721,
Singapore
Preface
Thorium is one of the most precious nuclear fuels available in nature, more
abundant than uranium which is employed currently for electricity production in
nuclear reactors. Calculations have revealed that thorium fuel has the potential to
provideenergytotheworldforcenturiesifusedinaclosedfuelcycle.Considering
this, the technologies for thorium utilization for power generation in nuclear
reactors are being developed worldwide.
ThebookonThorium—EnergyfortheFuturecontainsselectedarticlesfromthe
deliberations of distinguished scientists, engineers, and academicians who made
significant contribution to the field of thoriumutilization in the recently concluded
International Thorium Energy Conference (ThEC15) held in Mumbai during
October12–15,2015.ThEC15wasthefifthconferenceintheseriesofconferences
hosted by the International Thorium Energy Organization (IThEO). Previously,
IThEOorganized ThEC10 attheRoyal Institution ofGreatBritain,London,inthe
year 2010. ThEC11 was organized in collaboration with the Brookhaven National
Laboratory, USA, at the City College of New York, New York, in the year 2011.
ThEC12 was organized in collaboration with the Shanghai Institute of Applied
Physics (SINAP), Shanghai, and Chinese Academy of Sciences in the year 2012.
ThEC13 was organized in collaboration with CERN, Geneva, in the year 2013.
ThEC15 was jointly hosted by BARC, the leader in the Indian thorium energy
program; NPCIL which is involved in commercial nuclear power generation in
India;andHBNI,adeemeduniversitydedicatedtoresearchanddevelopmentinthe
frontier areas of nuclear science and technology in association with IThEO.
This book discusses research results on various facets of thorium energy right
from exploration and mining, thermo-physical and chemical properties of fuels,
reactor physics, challenges in fuel fabrication, thorium fuel cycle, thermal
hydraulics and safety, material challenges, irradiation experiences, to design of
advancedthorium-fueledreactors.Italsodescribesnewdevelopments,innovations,
and philosophies on thorium technology as fuel for tomorrow’s nuclear power
reactors.
v
vi Preface
Since there is a strong thrust globally to design nuclear reactors with
thorium-based fuel, the book shall be of particular interest to nuclear scientists,
reactor designers, regulators, academicians, and students worldwide.
Mumbai, India A. K. Nayak
Stockholm, Sweden Bal Raj Sehgal
Contents
Part I General Articles
Harnessing Thorium for Clean Energy Future: Challenges Ahead . . . . 3
Anil Kakodkar
Nuclear Power from Thorium: Some Frequently Asked Questions . . . . 11
Srikumar Banerjee and Hari Prakash Gupta
Thorium Technology Development in an Indian Perspective . . . . . . . . . 27
A. K. Nayak, Arun Kumar, P. S. Dhami, C. K. Asnani and P. Singh
Sustainability and the Role of Thorium in Our Future
Energy System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Björn Stigson
Technology Considerations for Deployment of Thorium Power
Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Matthias Krause
LFTR: In Search of the Ideal Pathway to Thorium
Utilization—Development Program and Current Status. . . . . . . . . . . . . 97
Benjamin Soon
Part II Fuel Cycle
Technology Assessment of Near-Term Open-Cycle Thorium-Fuelled
Nuclear Energy Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
W.J.Nuttall,S.F.Ashley,R.A.Fenner,P.D.KrishnaniandG.T.Parks
Sorption of Protactinium (V) on Silica Colloid and the Effect
of Humic Acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Madhusudan Ghosh and Rakesh Verma
vii
viii Contents
Thorium Utilization in Fast Breeder Reactors and in Cross-progeny
Fuel Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Bal Raj Sehgal
Electrolytic Reduction of Uranium Oxide in Molten Fluoride Baths
in Small Electrolytic Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Nagaraj Alangi, Jaya Mukherjee and P. Anupama
Evolution of Actinides in ThO Radial Blanket of Prototype Fast
2
Breeder Reactor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Abhitab Bachchan, K. Devan, G. Pandikumar and P. Puthiyavinayagam
A Proposal for a First ADS Demonstrator. . . . . . . . . . . . . . . . . . . . . . . 181
Jean-Pierre Revol
Proposal for an Experimental Fast ADS Using Th–Pu MOX Fuel
for Higher Actinide Transmutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Amar Sinha, Tushar Roy, Y. S. Kashyap, S. Bajpai and M. Shukla
Radiological Impact Assessment for Near Surface Disposal
of Thorium Waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Faby Sunny and Manish Chopra
Part III Thorium Based Fuel
(Th-U)O MOX Fuel Fabrication and Dry Recycling
2
of the Sintered Rejects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Sudhir Mishra, Kaushik Ghoshal, Joydipta Banerjee, Amrit Prakash,
K. B. Khan and Arun Kumar
Fluorination of Thorium Oxide by Ammonium Bifluoride
and Its Reduction to Metal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Abhishek Mukherjee and Alok Awasthi
Estimation of Plutonium Heterogeneity in Thoria–Plutonia Fuels . . . . . 233
K. V. Vrinda Devi, J. N. Dubey, P. S. Somayajulu, I. H. Shaikh,
Jyoti Gupta, S. D. Raut and K. B. Khan
Evaluation of Thermal Properties of Thoria–Urania Fuel . . . . . . . . . . . 239
Joydipta Banerjee, Santu Kaity, Koushik Bhandari, Arun Kumar
and Srikumar Banerjee
Thorium-Based Fuels for Advanced Nuclear Reactors:
Thermophysical, Thermochemical, and Thermodynamic
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Dheeraj Jain, D. Das and B. N. Jagatap
Contents ix
Determination of Room Temperature Thermal Conductivity
of Thorium—Uranium Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Santanu Das, Santu Kaity, R. Kumar, Joydipta Banerjee, S. B. Roy,
G. P. Chaudhari and B. S. S. Daniel
Thermo-physical Properties of ThC and ThN
from First Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Vinayak Mishra and Shashank Chaturvedi
Irradiation Behaviour of Thoria-Based Fuels. . . . . . . . . . . . . . . . . . . . . 299
Prerna Mishra, B. N. Rath, V. P. Jathar, H. N. Singh, P. M. Satheesh,
R. S. Shriwastaw, K. M. Pandit, Anil Bhandekar, G. K. Mallik,
Sunil Kumar and J. L. Singh
PuO Agglomerate Detectability in (Th,1%Pu)O Fuel—A Monte
2 2
Carlo Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
K. V. Vrinda Devi, K. Biju and K. B. Khan
Automated Fabrication of AHWR Fuel in Shielded Cells: Challenges
and Initiatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
S. Panda, Saurabh Gupta, A. Saraswat, Vijay Ahire, Sanjeev Sharma,
P. S. Somayajulu and K. Jayarajan
Online Fuel Failure Detection and Damage Severity Analysis
for Thorium-Based AHWR Fuel Matrix—An Empirical Analysis . . . . . 329
R. Rajalakshmi, Roshini Robin, K. Umashankari, A. Rama Rao
and P. K. Vijayan
Part IV Reactor Physics
Xenon Dynamics in AHWR-LEU with Coolant Density and Fuel
Temperature Feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Arindam Chakraborty, Amit Thakur, Baltej Singh and P. D. Krishnani
LORA Analysis Using Thorium in 220 MWe PHWR Fuel . . . . . . . . . . 351
Manish Raj, M. P. S. Fernando, Suma Nair and S. G. Ghadge
Improvement in Estimation of Distribution Algorithm (EDA)
for Fuel Loading Pattern Optimization in AHWR . . . . . . . . . . . . . . . . . 357
Amit Thakur, Baltej Singh, Anurag Gupta, V. Duggal, K. Bhatt
and P. D. Krishnani
Energywise Contributions of Th, Pu and U Isotopes to the
Reactivity Feedbacks of (Th-LEU) Fuelled AHWR . . . . . . . . . . . . . . . . 365
Anindita Sarkar, Umasankari Kannan and P. D. Krishnani
Power Flattening Study of Ultra-Long Cycle Fast Reactor Core . . . . . . 373
Taewoo Tak, Jiwon Choe, Yongjin Jeong, Jinsu Park, Deokjung Lee
and T. K. Kim
x Contents
3D Space-Time Analysis of Anticipated Transient Without Scram
in CHTR with Fuel Temperature Feedback. . . . . . . . . . . . . . . . . . . . . . 381
D. K. Dwivedi, Anurag Gupta and P. D. Krishnani
Part V Molten Salt Reactors
Investigations of BaF –ThF System . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
2 4
Sumanta Mukherjee, Smruti Dash, S. K. Mukerjee and K. L. Ramakumar
The iThEC Strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Jean-Pierre Revol
Fission Product Removal by Vacuum Spraying in a Heavy Water
Moderated Molten Salt Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Thomas Jam Pedersen
Radiation Dose Rate Mapping of Molten Active Fluoride Salt Loop
at UED, BARC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Tanmay Sarkar, Pradeep Bhargava, B. Ananta, A. K. Srivastava
and R. K. B. Yadav
CFD Analysis of Molten Fluoride Salt Natural Circulation
in a Rectangular Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Rakesh Chouhan, A. Borgohain, A. K. Shrivastava, N. K. Maheshwari
and P. K. Vijayan
The Stable Salt Reactor—A Radically Simpler Option for Use
of Molten Salt Fuel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Ian R. Scott
Molten Salt Reactor Research in Switzerland . . . . . . . . . . . . . . . . . . . . 455
Jiri Krepel, Boris Hombourger, Carlo Fiorina, Sergii Nichenko,
Jarmo Kalilainen, Peter Burgherr, Horst-Michael Prasser
and Andreas Pautz
Part VI Water Cooled Reactors with Thorium Fuel
Hydrodynamics of AHWR Gravity-Driven Water Pool Under
Simulated LOCA Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
I. Thangamani, Seik Mansoor Ali and Vishnu Verma
ExperimentalMeasurementand Analysisof NaturalCirculationFlow
Oscillations in a Vertically Heated Channel . . . . . . . . . . . . . . . . . . . . . . 481
J. Aparna, A. K. Nayak and A. Rama Rao
Estimation of Large Early Release Frequency for Advanced Heavy
Water Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
T. V. Santhosh, I. Thangamani, A. Srivastava, Gopika Vinod,
Vishnu Verma and P. K. Vijayan