Table Of ContentBBrriigghhaamm YYoouunngg UUnniivveerrssiittyy
BBYYUU SScchhoollaarrssAArrcchhiivvee
Theses and Dissertations
2013-11-22
TThhee PPsseeuuddoo--RRiiggiidd--BBooddyy MMooddeell ffoorr FFaasstt,, AAccccuurraattee,, NNoonn--LLiinneeaarr
EEllaassttiicciittyy
Anthony R. Hall
Brigham Young University - Provo
Follow this and additional works at: https://scholarsarchive.byu.edu/etd
Part of the Computer Sciences Commons
BBYYUU SScchhoollaarrssAArrcchhiivvee CCiittaattiioonn
Hall, Anthony R., "The Pseudo-Rigid-Body Model for Fast, Accurate, Non-Linear Elasticity" (2013). Theses
and Dissertations. 3869.
https://scholarsarchive.byu.edu/etd/3869
This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
ThePseudo-Rigid-BodyModelforFast,Accurate,Non-LinearElasticity
AnthonyR.Hall
Athesissubmittedtothefacultyof
BrighamYoungUniversity
inpartialfulfillmentoftherequirementsforthedegreeof
MasterofScience
MichaelJones,Chair
ParrisEgbert
DanielZappala
DepartmentofComputerScience
BrighamYoungUniversity
November2013
Copyright(cid:13)c 2013AnthonyR.Hall
AllRightsReserved
ABSTRACT
ThePseudo-Rigid-BodyModelforFast,Accurate,Non-LinearElasticity
AnthonyR.Hall
DepartmentofComputerScience,BYU
MasterofScience
Weintroduceto computergraphicsthe Pseudo-Rigid-BodyMechanism (PRBM)andthe
chainalgorithmfrommechanicalengineering,withaunifiedtutorialfromdisparatesourcematerials.
The PRBM has been used successfully to simplify the simulation of non-linearly elastic beams,
usingdeflectionsofananalogousspringandrigid-bodylinkage. Itofferscomputationalefficiency
aswellasanautomaticparameterizationintermsofphysicallymeasurable,intuitiveinputswhich
fit naturally into existing animation work flows for character articulation. The chain algorithm
is a technique for simulating the deflection of complicated elastic bodies in terms of straight
elasticelements,whichhasrecentlybeenextendedtoincorporatePRBMbeam-elementsinthree
dimensions. We present a new, mathematically equivalent optimization of the 3D PRBM chain
algorithm, fromitsformer asymptoticcomplexityof O(n2)inthe numberof elementsn, toO(n).
We also extend an existing PRBM for combined moment-force loads to 3D, where the existing
3D PRBM chain algorithm was limited to 3D PRBM elements for a moment-only load. This
optimizationandextensionarevalidatedbyduplicatingpriorexperimentalresults,butsubstituting
the new optimization and combined-load elements. Finally, a loose road-map is provided with
severalkeyconsiderationsforfutureextensionofthetechniquestodynamicsimulations.
Keywords: simulation,rigid-body,mass-spring,non-linearelasticity
ACKNOWLEDGMENTS
DeanR.WheelerfirstacquaintedmewiththeworkofLarryL.Howell,andpointedmeto
thePRBMasaneffectivemethodformodelingcompliantmechanisms.
MurphyJ.C.Randlewrotepipelinescriptsforinterfacingourresultswithexistingpackages
foranimationandrendering. Hesetupthe lighting,texturing,cameras,rendering,andotherscene
elementsnecessaryfortherenderedimagesfoundinthefigures.
Larry L. Howell generously offered his time and his expertise with PRBM techniques,
and offered early encouragement about the relevance and interest of our research goals. He
independentlyreviewedmythesisproposalforgeneralsoundness,andhisfeedbackregardingthe
PRBMbackgroundmaterialandourproposedextensionshelpedencourageustoproceed.
H.TracyHallre-formulatedmyearliestlong-hand,verboseformulasfortheO(n)-optimized
chainalgorithmintothecompact,elegantrepresentationofsection4.1.2aslinearcombinationsof
basis matrices. The results of chapter 5 came from implementing his formulation; my own later
refinementoftheearliermethodappearsinappendixA.Asamathematicalandtechnicalconsultant,
hehelpedpushtheworkforwardthroughafewkeywhiteboardsessions.
I would like to thank Parris Egbert and Daniel Zappala for willingly serving and giving
theirtime asmembers ofmythesis committee. Dr. Egbert tookadditional timetoreview andgive
importantfeedbackforboththeThesisProposaldocumentandthisThesis.
MyadviserandcommitteeChair,MichaelJones,providedinvaluablesupportthroughout
myentire program. He offeredme thefreedom andtrust totackle aproblem andset oftechniques
inwhichneitherofushadpriorexpertise. Hewasintellectuallygenerous,alwayswillingtoinvest
the time to understand and help me clarify the new concepts and techniques I uncovered in the
literature. Histechnicalinsightswerekeytoanumberofimportantbreakthroughs. Heneverkept
meintellectuallysubordinate,andwelcomedchallengingquestionsandpushback;myconfidence
asa researcherwasable toflourishas aresult. Hishelp withplanning andstrategy was critical in
definingaclear,manageable,andimplementablescopefortheproject;withouthisguidance,the
projectwouldhavebeenmuchmoredifficulttomanageandultimatelyfinish.
TableofContents
ListofFigures viii
ListofTables ix
ListofAlgorithms x
1 Introduction 1
1.1 Immediatecontributionsofthiswork . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Long-termcontributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 RelatedWork 5
2.1 Generalversusspecializedelasticitymethods . . . . . . . . . . . . . . . . . . . . 5
2.2 Finiteelementreductionandcoarsening . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Specialized1Delasticmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Background 10
3.1 Notationandterminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Historyandoverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 OverviewofthePRBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Overviewofthechainalgorithm . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 HistoryoftheChainAlgorithmwithPRBMelements . . . . . . . . . . . . 13
3.3 PRBMrecipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 TheplanarPRBMforamomentload . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Theplanar3RPRBMformomentandforceloads . . . . . . . . . . . . . 17
v
3.3.3 The3D1RPRBMforamomentload . . . . . . . . . . . . . . . . . . . . 19
3.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 Thechaincalculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 updateElementforthe3D1RPRBM . . . . . . . . . . . . . . . . . . . . . 27
3.4.3 transformElementforthe3D1RPRBM . . . . . . . . . . . . . . . . . . . 30
4 Methods 32
4.1 Linear-timeoptimizationofthechainalgorithm . . . . . . . . . . . . . . . . . . . 34
4.1.1 Thesimplebit: Fi andµi . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Σ Σ
4.1.2 Thenot-so-simplebit: ρi . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Σ
4.1.3 Puttingitalltogether . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.4 Extensiontobranchinggraphs . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.5 Acriticalserializationpoint . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 The3D3RPRBMforforceandmomentloads . . . . . . . . . . . . . . . . . . . 43
4.2.1 updateElementforthe3D3Rrecipe . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 transformElementforthe3D3Rrecipe . . . . . . . . . . . . . . . . . . . 48
5 Results 49
5.1 Re-implementing[Chaseetal.2011]asabaseline . . . . . . . . . . . . . . . . . . 50
5.2 Ourexperimentsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.1 Definitionoferrormetric . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Experimentresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.1 Runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.2 ErroroftheO(n)optimization . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.3 Errorof3Ralgorithmsversus1Ralgorithms . . . . . . . . . . . . . . . . 56
6 ConclusionandFuturework 59
6.1 Extendingthestaticalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1.1 Alternative3D3Rconfigurations . . . . . . . . . . . . . . . . . . . . . . 60
vi
6.1.2 Staticconstraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 ProposeddynamicPRBMmethods . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.1 Reducedcoordinateapproaches . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.2 Numericalintegrationintwokeycases . . . . . . . . . . . . . . . . . . . 62
6.2.3 Approachestoelementintegration(case1) . . . . . . . . . . . . . . . . . 62
6.2.4 Approachestochainintegration(case2) . . . . . . . . . . . . . . . . . . . 63
6.3 Directable,dynamictopologyandmaterialchange . . . . . . . . . . . . . . . . . 65
6.3.1 Automaticstressandfracturedetection . . . . . . . . . . . . . . . . . . . 65
6.3.2 Efficient,onlinematerialchange . . . . . . . . . . . . . . . . . . . . . . . 66
A AlternativeO(n)formulation 68
B Thecrossproductmatrix 72
References 73
vii
ListofFigures
1.1 Volumedeformationmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.1 AchainwithPRBMelasticelements . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Thepuremoment-loaded1RPRBM . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Su’s3RPRBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 A3-axisrevolutespringjointfromChase’s3DPRBM . . . . . . . . . . . . . . . 20
3.5 Illustrationofchainalgorithmtotalmomentcomputation . . . . . . . . . . . . . . 26
4.1 Extensionofthe3RPRBMto3D . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1 Elementtippairingsfortheerrormetricε . . . . . . . . . . . . . . . . . . . . . 52
P
5.2 Graphofruntimesforthefourcasesofthechainalgorithm . . . . . . . . . . . . . 54
5.3 Graphoftheerrorε fromthefourcasesofthechainalgorithm . . . . . . . . . . 55
P
5.4 Rendersofdeflectedchainswith20,25,40,and200elements . . . . . . . . . . . 57
viii
ListofTables
5.1 Runtimesforallfourcasesofthechainalgorithm . . . . . . . . . . . . . . . . . . 54
5.2 Errorε forallfourcasesofthechainalgorithm . . . . . . . . . . . . . . . . . . 55
P
ix
Description:is a technique for simulating the deflection of complicated elastic bodies in .. recipes for when that load consists only of a linear force, and when it