Table Of ContentMNRAS472,998–1022(2017) doi:10.1093/mnras/stx1984
AdvanceAccesspublication2017August3
The properties of radio galaxies and the effect of environment in
∼
large-scale structures at z 1
Lu Shen,1‹ Neal A. Miller,2 Brian C. Lemaux,1 Adam R. Tomczak,1 Lori M. Lubin,1
Nicholas Rumbaugh,3 Christopher D. Fassnacht,1 Robert H. Becker,1 Roy R. Gal,4
Po-Feng. Wu5 and Gordon Squires6
1PhysicsDepartment,UniversityofCalifornia,Davis,OneShieldsAvenue,Davis,CA95616,USA
2DepartmentofMathematicsandPhysics,StevensonUniversity,1525GreenspringValleyRoad,Stevenson,MD21153,USA
3NationalCentreforSupercomputingApplications,UniversityofIllinois,1205WestClarkSt.,Urbana,IL61801,USA
4InstituteforAstronomy,UniversityofHawai’i,2680WoodlawnDrive,Honolulu,HI96822,USA D
o
5Max-PlanckInstitutfu¨rAstronomie,Ko¨nigstuhl17,D-69117,Heidelberg,Germany w
n
6SpitzerScienceCentre,CaliforniaInstituteofTechnology,M/S220-6,1200E.CaliforniaBlvd.,Pasadena,CA91125,USA lo
a
d
e
d
Accepted2017August1.Received2017July31;inoriginalform2017February14 from
h
ttp
s
ABSTRACT ://a
c
a
In this study, we investigate 89 radio galaxies that are spectroscopically confirmed to be d
e
membersoffivelarge-scalestructures(LSSs)intheredshiftrangeof0.65≤z≤0.96.Based m
ic
onatwo-stageclassificationscheme,theradiogalaxiesareclassifiedintothreesub-classes: .o
u
p
activegalacticnucleus(AGN),Hybrid,andstar-forminggalaxy(SFG).Westudytheproperties .c
o
of the three radio sub-classes and their global and local environmental preferences. We find m
/m
AGN hosts are the most massive population and exhibit quiescence in their star formation n
ra
activity. The SFG population has a comparable stellar mass to those hosting a radio AGN s
/a
butareunequivocallypoweredbystarformation.Hybrids,thoughselectedasanintermediate rtic
population in our classification scheme, were found in almost all analyses to be a unique le
/4
type of radio galaxies rather than a mixture of AGN and SFGs. They are dominated by a 72
/1
high-excitation radio galaxy population. We discuss environmental effects and scenarios for /9
9
each sub-class. AGN tend to be preferentially located in locally dense environments and in 8
/4
thecoresofclusters/groups,withthesepreferencespersistingwhencomparingtogalaxiesof 06
2
similarcolourandstellarmass,suggestingthattheiractivitymaybeignitedinthecluster/group 2
0
6
virializedcoreregions.Conversely,SFGsexhibitastrongpreferenceforintermediate-density b
y
globalenvironments,suggestingthatdustystarburstingactivityinLSSs islargelydrivenby g
u
e
galaxy–galaxyinteractionsandmerging. s
t o
n
Key words: galaxies: active – galaxies: clusters: general–galaxies: evolution–galaxies: 1
1
groups:general–galaxies:starformation–radiocontinuum:galaxies. M
a
rc
h
2
0
Bestetal.2005,2007;Mauch&Sadler2007;Kauffmann,Heck- 2
1 INTRODUCTION 3
man&Best2008)andgenerallyretainthesepropertiesouttoz∼2
Two main galaxy populations are detected at radio wavelengths: (Malavasietal.2015)atleastforradiogalaxyatlog(M∗/M(cid:5))>10.
star-forming galaxies (SFGs) and galaxies with an active galac- Sinceradiowavesarenotaffectedbydustextinction,asevidenced
tic nucleus (AGN, e.g. Miley 1980; Condon 1992; Mauch & bythetightfar-infraredradiocorrelation(FRC)observedfordusty
Sadler2007;Smolcˇic´ etal.2008;Padovanietal.2009,2011).In SFGs (Condon 1992; Condon, Cotton & Broderick 2002; Bell
bothcases,thedominantsourceoftheradioemissionissynchrotron et al. 2003; Sargent et al. 2010; Appleton et al. 2014; Magnelli
radiation from relativistic electrons accelerated by supernova or et al. 2015), radio luminosity is widely used as a star formation
powered by AGN, with a sub-dominant component of free–free rate (SFR) indicator (e.g. Yun, Reddy & Condon 2001; Hopkins
radiationfromHIIregions(e.g.Condon1992). etal.2003;Belletal.2003,2005).Thescatteranddifferencesof
Radio AGNs are typically found in massive quiescent galaxies certainpopulationsintheFRCalsoallowfortheseparationofSFGs
with older stellar populations (Miller & Owen 2002; Best 2004; fromAGN(e.g.Padovanietal.2011;Bonzinietal.2013).
RadioAGNsareoftensegregatedintotwosub-populations:high-
excitation radio galaxy (HERG) and low-excitation radio galaxy
(cid:2)E-mail:[email protected] (LERG). These sub-populations are primarily classified based on
(cid:6)C 2017TheAuthors
PublishedbyOxfordUniversityPressonbehalfoftheRoyalAstronomicalSociety
RadiogalaxiesinLSSsatz∼1 999
thepresenceorabsenceofhigh-excitation(HE)emissionlinesin luminosity, and study their environmental preferences. We also
the spectra of their host galaxies (Hine & Longair 1979; Laing compare such environmental preferences of the three radio sub-
et al. 1994). Various methods have been applied to separate ra- classeswithacontrolsampleofspectroscopicallyconfirmedmem-
dio AGN sub-classes by means of radio morphology, the radio bers. For the purpose of studying environmental effects on radio
luminosity,andopticalexcitationdiagrams(e.g.Evansetal.2006; galaxies, rather than environmental properties driven solely by
Smolcˇic´ 2009; Bonzini et al. 2013; Padovani et al. 2015). It is colourorstellarmass,wecarefullyselectanon-radiocontrolsam-
foundthatthesetworadioAGNpopulationsaredifferentinternally; plematchedinthestellarmassandrest-framecolourforeachradio
HERGs are powered by radiative-mode (or quasar-mode, cold- sub-classandperformacomparisonontheglobalandlocalenvi-
mode)accretion,whileLERGsarepoweredbyjet-mode(orradio- ronments.
mode,hot-mode)accretion(e.g.Ciotti,Ostriker&Proga2010;Best The paper is outlined as follows. Section 2 introduces the five
&Heckman2012).Intheformercase,theaccretionisefficientnear LSSs.InSection3,wediscusstheobservationaldata.Wepropose
theEddingtonrate,whileinthelattercase,theaccretionisconsid- a classification scheme in Section 4 to divide radio galaxies into
erablylessefficient.Additionally,theblackholesthattheycontain AGN,Hybrids,andSFGs.InSection5,weanalysetheproperties
typically have very different masses, with the former population ofthehostgalaxiesofthethreeradiogalaxysub-classesandtheir
D
hostingblackholesthatare,onaverage,approximatelyanorderof environmentalpreferences.Wethen,inSection6,discusstheresults o
w
magnitudelessmassive(Hickoxetal.2009;Best&Heckman2012). ofthethreeradiosub-classesseparatelyandleadtoascenariofor n
lo
Environments,anothersubjectanalysedinthepaper,playanim- eachsub-class.Finally,inSection7,wesummarizeallourresults. a
d
portantroleontriggeringandquenchingprocesses.ForSFGs,this Throughoutthispaperallmagnitudes,includingthoseintheinfrared ed
role is evidenced by the relationships of galaxy colour, morphol- (IR),arepresentedintheABsystem(Oke&Gunn1983;Fukugita fro
m
ogy,stellarmass,andSFRwithvariousmeasuresofenvironment etal.1996).Allequivalentwidthmeasurementsarepresentedinthe h
(e.g.Dressler1980;Pengetal.2010;Gru¨tzbauchetal.2011;Peng restframeandweadopttheconventionofnegativeequivalentwidths ttp
s
ewthailc.h2p0r1o2c;eWsseatczceoluenttasl.fo2r0t1h3e)s.eHreolwateivoenrs,hiitpiss.nItohtafsulbleyeunnpdreorpsotosoedd cqourorteesdpoinndpirnogpetrouanfitesa.tWureeaodboseprtvaedcoinnceomrdiasnsicoen(cid:3).Acolllddidsatarkncmesataterer ://ac
a
that ram-pressure stripping (RPS), harassment, and tidal forces cosmologywithH0=70kms−1Mpc−1,(cid:4)(cid:3)=0.73,and(cid:4)M=0.27, dem
wouldactwithdifferentefficienciesandoverdifferenttime-scales, andaChabrierinitialmassfunction(IMF;Chabrier2003). ic
dependingonthepropertiesofthegalaxies andontheirenviron- .o
u
ments(e.g.Byrd&Valtonen1990;Abadi,Moore&Bower1999; 2 THE ORELSE LARGE-SCALE STRUCTURE p.co
Bahe´ etal.2013;Merluzzietal.2016).Meanwhile,AGNmaybe m
largelytriggeredthroughgalaxymergingorstrongtidalinteractions SAMPLE /m
n
(e.g. Kauffmann & Haehnelt 2000; Hopkins et al. 2006, 2008), In this section, we give a picture of the five LSSs in our sample. ra
s
though other environmental or secular processes may also be re- ThesefivefieldsaretheoriginalfieldsfromtheORELSEsurvey /a
sponsible (Kocevski et al. 2012, and reference therein). Resul- thatwere observedwithcoordinated VLAandChandraobserva- rtic
le
tant AGN activity can subsequently either trigger (positive feed- tions(seeRumbaughetal.2012fordetailsonthelatter).Theyspan /4
7
back)orsuppress(negativefeedback)starformationactivity(e.g. 7–15Mpc in the plane of the skyand 50–250Mpcalong the line 2
/1
Mullaney et al. 2012; Zubovas et al. 2013; Lemaux et al. 2014b; ofsight(LOS).ThefiveLSSsaredefinedbasedonboththeLOS /9
Hickoxetal.2014;King&Pounds2015). direction(asdeterminedfromthevelocityoffsets)andtheprojected 98
RadioAGNsarefoundpreferentiallynearorinclusters/groups distancetothenearestcluster/group.We,here,relyonRumbaugh /40
6
at low redshift (e.g. Miller & Owen 2002; Best 2004; Argudo- etal.(2012,2016)fortheLSSredshiftboundaries,determinedby 2
2
Ferna´ndezetal.2016)withsuchapreferenceappearingtopersist visuallyexaminingtheirredshifthistogram,anddesignedtoinclude 06
uptoz∼2(e.g.Magliocchettietal.2004;Lindsayetal.2014;Hatch allgalaxiesineachoverallLSS.Meanwhile,thespectroscopiccov- by
etal.2014;Malavasietal.2015).Assuch,radioAGNsarewidely eredtypicallyextendsto5Mpcfromanygivencluster/groupwithin gu
used to detect protoclusters at z > 1 (e.g. Best 2000; Venemans theredshiftrangeofeachLSS.Forthesefivefields,wehavefullyre- es
etal.2007;Wylezaleketal.2013).HERGsandLERGsalsoshow ducedradiocatalogues[ofthe16fieldsinORELSEwithVLA/Karl t on
different environmental preferences, with the former restricted to G.JanskyVeryLargeArray(JVLA)imaging]accompanyingfully 11
low-density environments and the latter occupying a wider range reducedphotometricandspectroscopiccatalogues.Moreover,they M
a
of densities (e.g. Donoso et al. 2010; Gendre et al. 2013). Radio spanthefullrangeofORELSEstructures,intermsofhalomassand rc
h
SFGs, conversely, tend to be located in lower global and local dynamics,albeitwithoutthehigherredshiftstructureswhichwill 2
0
density environments at low redshift (e.g. Miller & Owen 2002; beincludedinfutureworks.Wesummarizethecentralposition,the 23
Best2004). numberofclustersorgroups,andtherangeofvelocitydispersions
Inthisstudy,weinvestigate89radiogalaxies thatarespectro- ineachfield,seeTable1,while,thespectroscopypropertieswillbe
scopicallyconfirmedmembersoffivelarge-scalestructures(LSSs) describedinSection3.3.
at z ∼ 1 drawn from the Observations of Redshift Evolution in
LargeScaleEnvironments(ORELSE;Lubinetal.2009)survey.The
2.1 SC1604
ORELSEsurveyisasystematicsearchforLSSsaroundanoriginal
sampleof20galaxyclustersinaredshiftrangeof0.6<z<1.3 TheSC1604superclusterwasoriginallydiscoveredinGunn,Hoes-
withthefieldofviewofallfields∼0.25–0.5deg2.Thegoalisto sel&Oke(1986)asaclustercandidate,andthenconfirmedbyOke,
studygalaxypropertiesoverawiderangeoflocalandglobalenvi- Postman&Lubin(1998).TheLSSofSC1604spansaredshiftrange
ronments.Inthispaper,weuseVeryLargeArray(VLA)1.4GHz of0.84<z<0.96,consistingoffiveclustersandthreegroups,with
imagingtolocateradiogalaxiesbymatchingthemtoalargedata aclusterbeingσν >550kms−1.Manydetailedstudieshavebeen
setofspectroscopicallyconfirmedmembersandseparatetheminto performedonthisstructure(Lubinetal.1998a,2000;Postman,Lu-
threesub-classes:AGN,Hybrid,andSFG.Wecomparetheprop- bin&Oke2001;Best2002;Gal&Lubin2004;Riekeetal.2004;
erties of their hosts’ galaxies in colour, stellar mass, and radio Postmanetal.2005;Homeieretal.2006;Galetal.2008;Kocevski
MNRAS472,998–1022(2017)
1000 LShenetal.
Table1. PropertiesofORELSELSS.
Field RAa Dec.a <zspec>b Confirmed σ zspec Comfirmed
(J2000) (J2000) clusters/groupsc ranged LSSrange memberse
SC1604 16:04:15 +43:21:37 0.90 8 300–800 0.84–0.96 520
SG0023 00:23:52 +04:22:51 0.84 5 200–500 0.82–0.87 246
SC1324 13:24:35 +30:18:57 0.76 4 200–900 0.65–0.79 421
RXJ1757 17:57:19.4 +66:31:29 0.69 1 862.3±107.9 0.68–0.71 75
RXJ1821 18:21:32.4 +68:27:56 0.82 1 1119.6±99.6 0.80–0.84 129
aCoordinatesforSC1604,SG0023,andSC1324arethemedianofcentralpositionsofclusters/groups,whileRXJ1757andRXJ1821aregivenasthecentroid
ofthepeakofdiffuseX-rayemissionassociatedwiththerespectivecluster.
bAveragezspecofmembergalaxiesineachLSS.
cClusters/groupsarespectroscopicallyconfirmedusingthemethodpresentedinGaletal.(2008).
dGalaxy LOS velocity dispersion in units of km s−1, measured within 1Mpc. For SC1604, SG0023, and SC1324, the range of velocity dispersions of
D
clusters/groupsisgiven.ForRXJ1757andRXJ1821,thevelocitydispersionofthesingleclustersisgiven. o
eNumberofspectroscopicobjectsconfirmedintheLSSredshiftrange,withqualityflagQ=3or4,18.5≤i(cid:7)≤24.5(formoredetailsseeSection3.3). wn
lo
a
d
etal.2009;Lemauxetal.2010,2011,2012;Kocevskietal.2011; 3 OBSERVATIONS AND REDUCTIONS e
d
Rumbaughetal.2012,2013;Ascasoetal.2014;Wuetal.2014; In this section, we present the observations and the reduction of fro
Rumbaughetal.2016). m
radio, photometric, and spectroscopic data. We also describe the h
optical matching technique used to confirm radio galaxies with ttp
s
2.2 SG0023 spectroscopiccounterparts.Bytheendofthissection,weconfirm ://a
c
89radiogalaxiesinthefiveLSSs. a
The SG0023 structure was originally discovered in Gunn et al. d
e
(1986),andconfirmedincludingtwoadditionalgroupsbyOkeetal. m
ic
(1998). The LSS spans the redshift range of 0.82 < z < 0.87, .o
consistingoffivemerginggalaxygroups(Lubinetal.2009,1998a; 3.1 Radioobservations up
.c
Lemauxetal.2016).Manyadditionalstudieshavebeenperformed Each of the five LSSs were observed in 2006–2009 in the same om
on this structure (Postman, Lubin & Oke 1998; Lubin, Postman manner using the VLA at 1.4GHz in its B configuration, where /m
n
& Oke 1998b; Best 2002; Rumbaugh et al. 2012, 2013; Lemaux the resulting full width at half-maximum (FWHM) resolution of ra
etal.2016;Rumbaughetal.2016). the synthesized beam is about 5arcsec. Given the approximate s/a
31arcmin diameter field of view (i.e. the FWHM of the primary rtic
le
2.3 SC1324 beam),weoptedtoobserveeachtargetusingasinglepointingof /4
7
the VLA with the exception of SC1324 for which two pointings 2
TheSC1324superclusterwasoriginallydiscoveredinGunnetal. wereusedtocoverthefullextentofthestructure.Astheobserva- /1/9
(1986), with two clusters confirmed. Subsequent studies have in- tionswerecompletedpriortotheupgradeoftheVLA,weusedthe 98
creasedthestructuretothreeclustersandfourgroup,spanningthe ‘fourmode’correlatorsettingwhichconsistsofseven3.125MHz /40
redshiftrangeof0.65<z<0.79(Postmanetal.2001;Lubin,Oke channelsateachoftwointermediatefrequencies.Thismodewas 62
2
&Postman2002;Lubin,Mulchaey&Postman2004;Rumbaugh thebestcompromiseforsensitivity(fromawidertotalbandwidth) 06
etal.2012,2013,2016). withlesserdistortionofthebeam(thesmallerindividualchannels by
reduces bandwidth smearing). Each LSS was observed over the gu
e
courseofseveraldaysusingindividualtracksofseveralhoursper s
2.4 RXJ1757 day to insure good (u, v)-coverage with a nearly circular synthe- t on
The RXJ1757.3+6631 cluster (hereafter RXJ1757, described in sizedbeam.Netintegrationtimeswerechosentoresultinfinal1σ 11
Rumbaugh et al. 2012), was discovered as part of the ROSAT sensitivitiesofabout10µJyperbeam.Detailsoftheobservations M
a
North Ecliptic Pole (NEP) survey, and identified as NEP200 maybefoundinTable2. rc
h
(Gioiaetal.2003),andconsistingofonlyoneclusteratz=0.69. In general, the procedures for calibration and imaging of the 2
0
Becausewedetectlikelysub-structuresassociatedwithRXJ1757, data paralleled those presented in Miller et al. (2013) except that 23
weconsiderthissystemtobeaLSS.ThisLSSspanstheredshift theLSSdatacorrespondtoasingleor,atmost,twopointingsper
rangeof0.68<z<0.71,andhasonlylimitedstudies(Rumbaugh target field and required substantially fewer facets to handle the
etal.2012,2013). effectsofskycurvature.Theobservationsoneachdateincludeda
gain calibrator (3C48 for SC0023 and 3C286 for all other LSSs)
along with a nearby (ranging from 3.4◦ to 7.6◦) phase calibrator.
2.5 RXJ1821
The(u,v)dataforthesecalibratorswereeditedtoremoveobvious
The RXJ1821.6+6827 cluster (hereafter RXJ1821; described in interferenceandotheraberrationaldata,andtheresultinggainand
Lubin et al. 2009; Rumbaugh et al. 2012), was discovered in the phasecalibrationswereappliedtothetargetfields.Thetargetfields
ROASTNEPsurvey,andidentifiedasNEP5281,consistingofonly wereimagedusinga‘flys-eye’patternofsevenfacets,witheach
oneclusteratz=0.8168.Similarly,welikelyfindsurroundingsub- facethaving10241.5arcsecpixelsperside.Wide-fieldmapsmade
structureassociatedwithRXJ1821.ThisLSS,spanningtheredshift at lower resolution identified bright sources outside this primary
rangeof0.80<z<0.84,hasbeenstudiedbyGioiaetal.(2004), beamcoveringflys-eye,andthesesourcesalongwithbrightsources
Lubin et al. (2009), Lemaux et al. (2010), and Rumbaugh et al. insidetheflys-eyereceivedtheirowndedicatedsmallerfacetsfor
(2012,2013,2016). imaging. For each specific observation date, (u, v) data sets were
MNRAS472,998–1022(2017)
RadiogalaxiesinLSSsatz∼1 1001
Table2. VLAradioobservationcharacteristics.
Field Code Observationdatesa RAb Dec.b rmsc Beam
(J2000) (J2000) (µJy) size
SC1604 S7218 06July07,06July10,06July13,06April09 16:04:13.2 +43:13:51 9.3 5.3arcsec×5.0arcsec
SG0023 S8597 07November06,07November07,02November09,07November10 00:23:50.7 +04:22:45 13.9 4.4arcsec×4.4arcsec
SC1324N S9484 09February18,09February19,09February25,09February26,09March02,09March04 13:24:49.5 +30:51:34 11.4 4.7arcsec×4.5arcsec
SC1324S S9484 09February18,09February19,09February25,09February26,09March02,09March04 13:24:42.5 +30:16:30 10.5 4.7arcsec×4.5arcsec
RXJ1716 SA598 09February23,09February27,09February28,09March01 17:57:19.8 +66:31:39 10.5 4.9arcsec×4.7arcsec
RXJ1821 SA598 09February23,09February27,09February28,09March01 18:21:38.1 +68:27:52 9.3 4.9arcsec×4.7arcsec
aForSC1604,thisisstartingdayoftheobservations,whileforotherfields,thesearethedatewhentheobservationwastaken.
bSpatialpositionforthephasecentreofobservation.
crmssensitivityforfinalimageassociatedwithalldataforthatpointing.
D
generatedandself-calibrated.The(u,v)datawerethenaveragedto bridgeAstronomySurveyUnit.2 Additional,JandKsbandimag- o
w
produceasingle(u,v)datafilecorrespondingtothecompletesetof ingwastakenusingtheCanada–France–HawaiiTelescope(CFHT) nlo
observations(i.e.combiningallobservationdates)foreachtarget Wide-fieldInfraRedCamera(WIRCam;Pugetetal.2004)mounted ad
e
LSSfield.Finalroundsofimagingandself-calibrationwerethen ontheCFHTandwasreducedthroughtheI’iwipre-processingrou- d
performedonthese(u,v)data.Inthesefinalimagingsteps,thedata tinesandTERAPIX.IRimagingat3.6,4.5,5.8,and8.0 µm(5.8and fro
m
for a specific LSS target were imaged separately by intermediate 8.0 µmonlyavailableforSC1604)wastakenusingtheSpitzertele- h
frequency,polarization,andinroughly2-hblocksinLocalSidereal scopeInfraredArrayCamera(IRAC;Fazioetal.2004).Thebasic ttp
s
Time. The resulting images were then combined using variance calibrated data images provided by the Spitzer Heritage Archive ://a
weightingtoarriveatthefinalimagesforeachtargetLSSfield. werereducedusingtheMOSAICKERANDPOINTSOURCEEXTRACTOR ca
Thefinalimageswerethenusedtogeneratesourcecatalogues. (Makovoz&Marleau2005)packageaugmentedbyseveralcustom de
m
TheNationalRadioAstronomyObservatory’s(NRAO)Astronom- InteractiveDataLanguagescriptswrittenbyJ.Surace. ic
icalImageProcessingSystemtaskSADcreatedtheinitialcatalogues Photometry was obtained by running Source Extractor .ou
byexaminingallpossiblesourceshavingpeakfluxdensitygreater (SEXTRACTOR; Bertin & Arnouts 1996) on point spread function p.c
o
thanthreetimesthelocalrmsnoise.Wetheninstructedittoreject (PSF)-matchedimagesconvolvedtotheimagewiththeworstsee- m
allstructuresforwhichtheGaussianfittedresulthasapeakbelow ing. Magnitudes were extracted in fixed apertures to ensure that /m
n
fourtimesthelocalrmsnoise.BecauseGaussianfittingworksbest themeasuredcoloursofgalaxiesareunbiasedbydifferentimage ra
s
fcorerautendrebsyolvSAeDdhaanvdinmgasrugbintraallcyterdesthoelvGedaussosuiarcnesfi,tsrefsriodmuatlhieminagpeust qetuaall.it2y01fr5o)mwaismuasgeedtfooriSmpaitgzee.r/AIRlsAoC, tihmeagpeasc,kdaugeetoT-tPhHeOTlar(gMeePrSliFn /artic
le
images were inspected in order to adjust the catalogue. This step ofthesedatathatcanblendprofilesofnearbysourcestogetherand /4
7
addedthoseextendedsourcespoorlyfittedbyGaussians.Peakflux contaminatesimpleaperturefluxmeasurements.SeeLemauxetal. 2
/1
density, integrated flux density, and their associated flux density (2016)formoredetails. /9
errors(σ)aregeneratedbySAD.Weusethepeakfluxdensityunless Spectralenergydistribution(SED)fittingwasperformedinthree 98
theintegratedfluxislargerbymorethan3σ thanthepeakfluxfor stages.Atthefirststage,aperturemagnitudeswereinputtothecode /40
6
eachindividualsource. EasyandAccuratezphot fromYale(EAZY,Brammer,vanDokkum 22
0
& Coppi 2008). This includes six templates derived from a non- 6
negativematrixfactorizationdecompositionoftheProjectd’E´tude by
3.2 Photometricobservationsandcatalogues des GAlaxies par Synthe`se Ev´olutive (PEGASE; Fioc & Rocca- gue
Comprehensivephotometriccataloguesareconstructedforallfive Volmerange 1997) template library with one additional template st o
fromMaraston(2005)representinganoldstellarpopulation.This n
LSSs.Wesummarizetheavailableopticalandnear-infrared(NIR) 1
templatesetisgenerallymoreeffectiveatidentifyingthelocation 1
observations for each LSS and the reduction of these data in Ta- M
ofstrongspectralbreaksinbroad-bandphotometrythanusingin-
blesC1andC2.Afulldescriptionofthereductionprocesswillbe a
dividual templates. We refer the reader to Brammer et al. (2008) rc
giveninTomczaketal.(2017).Opticalimagingwastakenwiththe h
for a more thorough discussion of the templates used to fit for 2
Large Format Camera (LFC;Simcoe et al. 2000) on the Palomar 0
2
5-mtelescope,usingSloanDigitalSkySurvey(Doietal.2010)-like photometricredshifts. 3
r(cid:7), i(cid:7), and z(cid:7) filters, reduced in the Image Reduction and Analysis Foreachobject,thezphot isestimatedfromaprobabilitydistri-
butionfunction(PDF,hereafterP(z)),generatedbycalculatingthe
Facility (Tody 1993), following the method in Gal et al. (2008) .
WealsouseR-,I-,andZ-bandopticalimagingfromSuprime-Cam χ2 ofthephotometrieswithrespecttoPEGASEmodels.Aseparate
setoffittingwasperformedutilizingalibraryofstellartemplates
(Miyazakietal.2002)ontheSubaru8-mtelescope,reducedwith
(Pickles1998)todeterminestarsfromgalaxies.Inthesecondstage
theSDFRED2pipeline(Ouchietal.2004)supplementedbyseveral
routinesTraitementE´le´mentaireRe´ductionetAnalysedesPIXels of the fitting process, the code EAZY was run again using zphot or
(TERAPIX).1 Some J- and K-band data were taken with the United high-qualityspectroscopicredshiftswhenavailabletoderiverest-
framemagnitudesforallphotometricobjects.Magnitudeswerecor-
Kingdom Infrared Telescope (UKIRT) Wide-Field Camera (WF-
rectedtoinfinitybyapplyingthedifferencebetweenMAG_APER
CAM;Hewettetal.2006)mountedontheUKIRTandwasreduced
and MAG_AUTO in the detection band to all magnitudes when
usingthestandardUKIRTprocessingpipelinecourtesyoftheCam-
drivingphysicalparametersfromSEDfitting.Asforthefinalstage,
1http://terapix.iap.fr 2http://http://casu.ast.cam.ac.uk/surveys-projects/wfcam/technical
MNRAS472,998–1022(2017)
1002 LShenetal.
SEDfittingonaperture-correctedmagnitudeswasperformedwith bolometricIRluminosity,L .Aluminosity-independentconver-
TIR
the Fitting and Assessment of Synthetic Templates (FAST; Kriek sion of flux to LTIR was first suggested at by the stacking results
etal.2009)code,withthesameredshiftusedinthesecondstage. ofPapovichetal.(2007).Sincethenthistechniquehasbeensup-
BecausethetemplatesusedwithEAZYcannotbeusedtoestimate portedbyseveralstudiesacrossabroadrangeofredshiftsandstellar
physicalpropertiessuchasstellarmassweemploythestellarpop- masses(seee.g.Muzzinetal.2010;Wuytsetal.2011;Tomczak
ulation synthesis (SPS) library of Bruzual & Charlot (2003) as- etal.2016).
sumingaChabrier(2003)stellarIMFandsolarmetallicityforthis Weapplyaqualityflagforeachphotometricdetectiontoinclude
partoftheanalysis.Fordustextinction,weadopttheCalzettietal. detectionsabove3σ inthedetectionimagewithcoverageinatleast
(2000)attenuationcurve.Weadoptdelayedexponentiallydeclin- five images, and exclude stars, saturations,3 and bad SED fitting
ingstarformationhistories(SFRs∝t×e−t/τ),allowinglog(τ/yr) (∼1percent worst χ2 values). Photometric objects are also re-
torangebetween8.5and10instepsof0.5,log(age/yr)torange stricted to be in the same spatial area as the spectroscopic ob-
between8and10instepsof0.2,andA torangebetween0and servation in each field and observed i(cid:7) band 18.5 ≤ i(cid:7) ≤ 24.5 to
V
3instepsof0.1.OnlythestellarmassandV-bandattenuationin maximize the completeness of spectroscopy, while still including
magnitudes (A ) derived from this fitting are used in this paper. thevastmajorityofourspectroscopicallyconfirmedmembers.
V D
It is important to note that the parameter space used in our SPS Moreover, we use a wider LSS photometric redshift range for o
w
modellingissmallerthaninothercontemporarystudies.Neverthe- photometricobjectswithoutconfirmedz ,duetotheuncertainty n
spec lo
less,wehavetestedouranalysisusingstellarmassesderivedfrom of z , which varies from field to field. We use z selection a
phot phot d
amoreextendedparameterspaceandfindthatourresultsremain described in Appendix B to select the photometric members (see ed
unchanged. TableB1fornumberofphotometryintheLSSs).Thezphotredshift from
The precision and accuracy of the photometric redshifts rangedefinedusingequation(B1). h
were estimated from fitting a Gaussian to the distribution of ttp
a(znsdpewc−aszfophuont)d/(t1ob+ezσsp(cid:9)ezc/)(1m+eza)s∼ur0e.m03enwtsithinatchaetarsatnrogpeh0i.c5o≤utlzie≤rr1a.t2e 3.3 Spectroscopicobservations s://aca
((cid:9)z/(1+z)>0.15)of5–10percentforallfivefieldstoalimitofi(cid:7) Spectroscopictargetswereselectedbasedontheopticalimagingin de
≤24.5.Aslightsystematicoffsetfromzero((cid:9)z/(1+zphot)∼0.01) the r(cid:7), i(cid:7), and z(cid:7) from LFC,following the methods in Lubin et al. mic
wasnoticedforallfivefields.Thevalueofthisoffset,multiplied (2009).Wetargetedobjectswithprioritygiventoreddergalaxies .ou
by (1 + zphot), was applied to all raw zphot values (see Lemaux atthepresumedredshiftsoftheLSSs,whichwasintendedtopref- p.c
o
etal.2016;Tomczaketal.2017formoredetails).Forgalaxieswith erentiallyconfirmredsequencemembersoverbluercounterparts, m
knownorsuspectedAGNinoursamplebasedonourradioclas- generallyincludinggalaxieswithani(cid:7)-bandmagnitudebrighterthan /m
n
sification,wechecktheirstellartemplatefitting.Theyallprovide 24.5. In addition, for certain masks, we prioritized X-ray and ra- ra
s
dgiofofedrefintstitfoAthGeNo/bHseyrbvreiddptehmotpolmateestrwy,etrheuisnMste∗aadndusAeVd.wouldnotbe dwiiothdtehteecDteedepobIjmecatgsi.nTghaenodpMticualltis-pOebcjteroctscSoppeyctwroagsrapprihm(aDriElyIMtaOkeSn; /artic
le
We make use of Spitzer Multiband Imaging Photometer for Faberetal.2003)ontheKeckII10mtelescope.DEIMOSisanef- /4
Spitzer (MIPS) 24µm observations for estimating rest-frame to- ficientinstrumentforaspectroscopicsurveyofhigh-redshiftLSSs, 72
talIR(TIR)luminosities(8-1000µm,LTIR),whichareavailablefor because of its large field of view (16.7arcmin × 5.0arcmin) and /1/9
SC1604, SG0023, and RXJ1821. Due to the large PSF of these itscapabilityofpositioningupto120+galaxiesperslitmask.We 98
data (PSF (cid:2) 4arcsec), profiles of nearby sources would blend used the 1200 line mm−1 grading with 1arcsec-wide slit at vari- /40
6
together and contaminate simple aperture flux measurements. To ouscentralwavelengths(seeTable3),withwavelengthcoverageof 22
help mitigate this effect, we employ T-PHOT (Merlin et al. 2015). approximately2600Å.Totalexposuretimesare1–4.5hpermask, 06
In brief, the methodology of T-PHOT is as follows. First, the posi- whichvariedbasedonobservationalconditionsandthemagnitude by
tions and morphologies of objects are obtained for use as priors distributions of targets. A few additional redshifts from the Low gu
e
Abarsneodutosn1a99se6g)m) oefntaatihoinghmeraprepsrooludtuicoendibmyagSeE.XCTRuAt-CoTuOtRs(aBreerttainke&n RadedseodluftoiornSCIm16a0g4in,gSGS0p0e2c3tr,oamndetRerX(JL1R82IS1;(sOekeeOekteaelt.a1l.919959)8w;Gerael st on
from this higher resolution image which are then used to create &Lubin2004;Gioiaetal.2004). 11
low-resolution24µmmodelsofeachobjectbysmoothingwitha DuringthereductionofDEIMOSdata,serendipitousdetections Ma
providedconvolutionkernel.Thesemodelsarethensimultaneously (hereafterserendips)wereidentifiedbyeyeinthespatialprofileof rch
fittothe24µmimageuntiloptimalscalefactorsforeachobjectare slits.Ifsuchdetectionsexisted,aserendipitousspectrumwasgener- 20
obtained as assessed through a global χ2 minimization. We run atedusingthemethoddescribedinLemauxetal.(2009).Redshifts 23
T-PHOT in ‘cells-on-objects’ mode where when fitting a model for andqualityflag(Q)weredeterminedforalltargetsserendipitous
a given object only neighbours within a 1arcmin ×1arcmin box detections.SeeGaletal.(2008)andNewmanetal.(2013)formore
centredontheobjectareconsideredinthefitting.Afterthisinitial detailsonthequalityflags.Weusespectroscopicobjectsonlywith
sequence, T-PHOT is then rerun in a second pass in which regis- Q=3and4inthispaper.Q=3meansonesecureandonemarginal
teredkernelsgeneratedduringthefirstpassareutilizedtoaccount featurewereusedtoderivetheredshift.TargetsofQ=4areatleast
formildastrometricdifferencesbetweentheinputimages.Output twosecurefeatureswereused.Q=−1flagmeansthetargetwas
fluxesarethetotalmodelfluxfromthebestfit. definitelydeterminedtobestar.Q=1or2indicatedthatwecould
To estimate LTIR, we make use of the IR spectral template in- notdetermineasecureredshift.Moreover,thesamei(cid:7) bandmag-
troduced by Wuyts et al. (2008). This template is constructed by nitude use flag (18.5 ≤ i(cid:7) ≤ 24.5), as applied to the photometric
averagingthelogarithmofalltemplatesintheDale&Helou(2002) catalogues,wasappliedtothespectroscopicsamples,tokeepthese
IRspectrallibrary.Foreachgalaxy,wescaletheIRspectraltem-
plate,shiftedtothegalaxy’sredshift(z whenavailable)toobtain
spec
itstotal24µmfluxestimate.Wethenshiftthetemplatebacktothe 3Definedascaseswheremorethan20percentofthepixelsinthephoto-
restframeandintegratebetween8and1000µmtreatingthisasthe metricaperturearesaturatedinthedetectionimage.
MNRAS472,998–1022(2017)
RadiogalaxiesinLSSsatz∼1 1003
Table3. DEIMOSspectroscopicobservationcharacteristics.
LSS Central Approximatespectral Exposuretime Averageseeing Numberof Numberof
λ(Å) coverage(Å) range(s) range(arcsec) mask targetsa
SC1604 7700 6385–9015 3600–14400 0.50–1.30 18 2445
SG0023 7500–7850 6200–9150 5700–9407 0.45–0.81 9 902
SC1324 7200 5900–8500 2700–10800 0.44–1.00 12 1237
RXJ1757 7000–7100 5700–8400 6300–14730 0.47–0.82 6 728
RXJ1821 7500–7800 6200–9100 7200–9000 0.58–0.86 6 593
aIncludingspectroscopictargetwith18.5≤i(cid:7)≤24.5,includingsirendips.
twocataloguesconsistent.Welistthenumberofspectroscopically redshifts (referred to as radio-spec matches) and within the LSS
confirmedmembers,withintheLSSredshiftrangeinTable1. redshiftrange(seeTable1),referredtoasradioconfirmedgalaxies.
D
Weobtain272radio-specmatchesfromtheradio-photmatches,71 o
w
ofwhicharemembersoftheLSSs(seeTable4fornumbersofradio- n
3.4 Opticalmatching photmatches,radio-specmatches,andradio-confirmedgalaxiesin loa
d
Priortobeginningthefulloptical–radiomatchingprocess,therel- eachLSS). ed
ative astrometry of the two sets of imaging was compared in the Radiosourcesmayhaveextendedmorphology,however,inthe fro
m
followingway.Thepositionsofradiopointsourceswithadetec- maximum LR technique, each radio source has been assumed to h
tionsignificancelargerthan10ineachfieldweredrawnfromthe be a point source coincident with the optical centre. To account ttp
catalogues generated in Section 3.1 and were nearest-neighbour forastrophysicalandastrometricoffsets,weuseσj =2arcsecas s://a
matchedtothephotometriccatalogueineachcorrespondingfield. thesearchradiusandrantheopticalmatchingagain.Weexamined ca
The median offsets of the radio sources relative to their nearest- theadditionalmatchesbyoverlayingradiofluxcontoursforeach de
m
neighbouropticalcounterpartsinαandδweremeasuredforeach match on the optical detection image to determine whether they ic
individualfield.Theoffsetswerealwayslessthan0.4arcsecandtyp- are extended radio objects and confirm by eye if they are truly .ou
icallymuchless.Theinverseoftheseoffsetsweresubsequentlyap- radioobjectswithspectroscopiccounterparts.Withthismethod,we p.c
pliedtothefullradiocatalogueforeachfield.Theresultantnormal- added18radiogalaxieswithspectroscopicallyconfirmedredshifts om
izedmedianabsolutedeviation(Hoaglin,Mosteller&Tukey1983) totheradio-confirmedsample.Thenumbersofextraradiogalaxies /m
n
ofthecorrectedradiopositionsofthe>10σsourcesrelativetothose confirmedineachoftheLSSarelistedinTable4. ra
s
oftheiropticalcounterpartswasfoundtobe0.25arcsec,whichis Toaccountforradiodoubles,i.e.thosegalaxiesforwhichtwo /a
considerablysmallerthantheradius(1arcsec)chosenforoptical– distinctradioobjectsarephysicallyassociatedwithanindividual rtic
radiomatching. opticalobject,asinthecaseofFanaroff–RileytypeIandIIsources le/4
ouTrorasdeiaorcshouforcrersadtoiotghaelapxhioetsowmiethtriinctchaetainlodgivuiedsu.aWlLeSuSsse,twheemmaatxcih- d(Fiuasnaarnodffra&ntRhieleoypt1ic9a7l4m),awtcehiunsgedagσajin=us5inagrctsheecsapsecthtreossceoaprcicharllay- 72/1/9
mumlikelihoodratio(LR)techniquedescribedinRumbaughetal. confirmedmembers.Weexaminedtheadditionalmatchesbyover- 98
(2012),whichwasdevelopedbySutherland&Saunders(1992)and layingradiofluxcontoursforeachmatchontheopticaldetection /40
6
also used by Taylor et al. (2005), Gilmour et al. (2007), and Ko- imagetodetermineandconfirmbyeyeiftheyaretrulyradiodou- 22
cevskietal.(2009).Themainstatisticcalculatedineachcaseisthe bles.WefoundoneradiodoubleinSC1324.Theradiofluxdensity 06
LR,whichestimatestheprobabilitythatagivenopticalsourceisthe ofthissourceisthecombinedfluxdensityoftworadiosources. by
genuinematchtoagivenradiosourcerelativetothearrangementof Inordertoconfirmourspectroscopicsampleisnotbiased,we gu
e
thetwosources(cid:2)arisingby(cid:3)chance.TheLRisgivenbytheequation pwehrefonrmtheedpthhoetfoomlleotwriicngcosutenptse.rpWaertsusdeozpnhoottfhoarvreadaios-epchuortemzasptecch,etso, st on
LRi,j= wiexp −σ2ri2,j/2σj2 (1) stheelescetgpaoltaexniteisalaLndSSthmeeramdbioe-rcso.Tnfihremraeddiog-aplahxoitessatmhaptleariencmluadtcehsebdotihn 11 Ma
j thesameradius(σj =1arcsec).Thissampleisdescribedinmore rch
Here,r istheseparationbetweenobjectsiandj,σ isthepositional detailinSection3.2andAppendixB,namedasradio-photsample. 2
i,j j 0
errorofobjectj,whereweuse1arcsecaspositionalerrorofallradio Thenumberofradio-photsampleobjectsineachLSSarelistedin 23
detection(Condon1997),andw2=1/n(<m)istheinverseofthe Table4.
i i
numberdensityofopticalsourceswithmagnitudefainterthanthe When a radio source matches to a spectroscopic target with a
observedi(cid:7)-bandmagnitude.Theinclusionofthelatterquantityis blendedserendip,wewererequiredtodeterminetherealspectro-
designedtoweightagainstmatchingtofainteropticalobjectsthat scopiccounterpart.ThereareeightsuchcasesacrossthefiveLSS:
aremorelikelytohavechanceprojections.Foreachradiosource, sixinSC1604,oneinSG0023,andoneinRXJ1821.Wedetermined
we carried out a Monte Carlo (MC) simulation to estimate the thespectroscopiccounterpartofagivenradiosourcebasedontwo
probabilitythateachopticalcounterpartisthetruematchusingthe methods.First,thespatialseparationbetweentheradiosourceand
LRs.Weadoptthesamethresholdformatchingtosingleordouble spectroscopictargetanditsserendipbasedonacarefulde-blending
objectsasRumbaughetal.(2012). oftheobjectwhenpossible:thefurthertheopticalobjectfromthe
The optical matching is done to the overall photometric cata- radioobject,thelesslikelyitwillbematchedtotheradioobject.
logues, aimed to increase the probability of the true match. We Incaseswherethisde-blendingwasnotconvincing,weexamined
obtainatotal589radio-photmatchesinthemaximumlikelihood thetwo-dimensionspectrumoftheblendedsourcesandchosethe
matching. In this paper, we mainly analyse radio objects which brighter of the traced emission, since the probability of a given
have photometric counterparts with spectroscopically confirmed radio object matched to the brighter optical object is higher. We
MNRAS472,998–1022(2017)
1004 LShenetal.
Table4. Numberofradiosources,andphotometricandspectroscopicMatches.
Field Radio Radio-phot Radio-spec Radio-phot Radio Radio
sourcesa matchesb matchesc sampled confirmede extraf
SC1604 501 193 109 42 32 9
SG0023 313 95 53 12 6 2
SC1324 565 165 36 49 21 4+1
RXJ1757 258 91 45 6 3 0
RXJ1821 201 45 29 13 9 3
aRadiosourceswithasignificance>4σ inatleastoneoftheradiointegratedorpeakflux.
bRadiosourcesmatchedtophotometriccounterpartsinthefield,restrictedwith18.5≤i(cid:7)≤24.5andthesamespatialareaascorresponding
spectroscopicimaging.
cRadiosourcesmatchedtospectroscopiccounterpartsinthefield,restrictedwith18.5≤i(cid:7)≤24.5andqualifyflag.
dRadioobjectsthathavecounterpartsofphotometricmembersintheLSSsinσj=1arcsec.Forphotometricmembers,seeexplanation
D
inSection3.2. o
eRadioobjectsmatchedinσj=1arcsecthathavespectroscopicallyconfirmedcounterpartsintheLSSs. wn
fRadioextraconfirmedmembersinσj=2arcsec+confirmedradiodouble.Thefinalnumberofradioconfirmedsampleisaddingthe loa
lasttwocolumns. de
d
determined that the primary spectroscopic targets are the correct normalgalaxies(Condon1992;Kauffmannetal.2008;DelMoro from
matchestoalleightradioobjects. etal.2013),andalsoconsistentwiththeselectionusedbyotherstud- h
ies (e.g. Hickox et al. 2009). Applying this criteria, we select 20 ttps
AGNsfromtheradio-confirmedsample(seeTable4).Wenotethat ://a
4 TWO-STAGE RADIO CLASSIFICATION theradioluminositycriteriameansthatallSFGsandHybridshave ca
d
Radioemissioncanhaveanoriginfromsynchrotronradiationand luminositiesbelow1023.8;however,becauseofthesecondcolour– em
free–freeradiation,bothofwhichareactiveprocessesforanSFG. SRLcriteria(seeSection4.2),AGNscanhaveradioluminosities ic.o
lessthan1023.8aswell. u
Conversely,theradioemissioninAGNisdominatedbysynchrotron p
.c
andrelatedprocesses.Therefore,weneedamethodtodistinguish o
m
betweenradioemissionduetostarformationandthatduetoAGN /m
activity.Wedefinea‘hybridgalaxy’(hereafterHybrid)asaradio 4.2 Colour–SRLcriteria nra
galaxywithemissionpotentiallyassociatedwithbothSFandAGN s/a
processes. Thesecondstageofourclassificationisthecolour–SRLmethod. rtic
TheFIRandradioluminositiesofSFGsarefoundtobetightly Thedustextinctioncorrectionappliedtotherest-frameMU −MB le/4
related, known as FRC (e.g. de Jong et al. 1985; Helou, Soifer colourfollowsthemethodinCalzettietal.(2000)withAV,derived 72
& Rowan-Robinson 1985; Helou et al. 1988; Condon 1992; Yun from photometric catalogues, as the colour excess of the stellar /1
etal.2001).TheTIR(8−1000µm)/radioluminosityratioqTIR,one continuumEs(B−V)foreachspectroscopicobject.Studieshave /998
indicatoroftheFRC,hasbeenwidelyusedtodisentangleAGNsand shown that AGN and SFGs occupy different areas in the 4000Å /4
0
SFGs(e.g.Helouetal.1985;Belletal.2003;Sargentetal.2010; breakDn(4000)versusradioluminositynormalizedbystellarmass 62
Padovanietal.2009),sincetheFIRemissionat250–1000µmcomes diagramforradiogalaxiesuptoz<1.3(Bestetal.2005;Smolcˇic´ 20
6
fFruormtheorpmtiocarell,ytthheicFkRreCgihoanssobfeeannifnotuenndseltyoSbFeGc(oKnestnannitcuattt1z9<98)2. MetUal−. 2M00B8()d.uTshtecoPreraercstoedn)croersrte-flraatimoneccooleofufirciiesn∼t0o.f65D,nu(4si0n0g0)spaencd- by gu
(Sargent et al. 2010), though, more recently, studies indicated a troscopicallyconfirmedgalaxieswhichhave(i)areliablemeasure- es
mildevolutionontheslopeof(1+z)γ (Maoetal.2011;Bourne mentofDn(4000),(ii)a3σ detectioninMIPS,and(iii)whichwere t on
et al. 2011; Schleicher & Beck 2013), where γ = −0.12 ± 0.04 matchedtoasignificant(>4σ)radiosource.Becauseofthisstrong 1
1
(Magnellietal.2015).Welackmid-IRorFIRobservationinsome correlationandourinabilitytomeasureDn(4000)foreveryradio M
of our cluster fields to derive TIR and thus are unable to adopt galaxy,weusetherest-frameMU−MBcolourinstead. arc
this method for the full sample. As a solution to this problem, Wecalibratethecolour-SRLseparationwithqTIR classification. h 2
weutilizeMIPS24µmobservations fromSC1604,SG0023,and WeutilizeMIPSmid-IRobservationsfromSC1604,whichisthe 02
3
RXJ1821,toderiveq ,andtodevelopatwo-stageclassification onlyfieldwithdeep,wide-fieldMIPSobservationamongstthefive
TIR
thatreliesonL andcolour–stellarmassnormalizedradiolu- fields, and two narrow-field (7arcmin × 7arcmin) observations
1.4GHz
minositydensity(colour–SRL),usingtheM(U)−M(B) as fromSG0023andRXJ1821.Tomaximizeoursamplepopulation,
rest-frame
colour versus L modulated by the galaxy stellar mass. We wetakeallradiosourceswithhigh-qualityspectroscopiccounter-
1.4GHz
obtain107radiogalaxiesfromradio-specmatchesatallredshifts partsintheentirefieldwhichalsohave3σ 24µmdetections.We
whichhave24µmdetectionsat≥3σ (seeSection3.2),notingthat obtain107galaxiesfromwhichtoobtainourclassificationrulesfor
thesegalaxiesarenotnecessarilyconfirmedtotheLSSs. the colour–SRL method via qTIR equation adopted from Lemaux
etal.(2014b):
(cid:4) (cid:5) (cid:4) (cid:5)
4.1 Radioluminositycriteria q =log 3.939×1026LTIR −log L1.4GHz . (2)
TIR 3.75×1012W WHz−1
We set the primary criteria to be that radio galaxies with
log(L ) > 23.8 are classified as AGNs. Studies have found Themaincontributiontotheuncertaintyonq comesfromthe
1.4GHz TIR
thatalmostallgalaxiesatz∼1withradiopowerabovethisthresh- spectraindex(α),whichistypicallyintherangeof0.4≤α≤1.0
old are AGN, and is consistent with the maximal radio output of for80percentofalltypesofgalaxiesintheredshiftrange0<z<4
MNRAS472,998–1022(2017)
RadiogalaxiesinLSSsatz∼1 1005
D
o
w
n
lo
a
Figure1. qTIRhistogram.Including107radioobjectswithspectroscopic de
aconldoumreidd-IsRolicdoulinntee,rpcaerntstr.eFditatitnqgTbIRy=ad1o.5u0ble(σ-G=aus0s.i6a0n)manoddeqlT,IpRlo=tte2d.2i5n d from
(reσgi=on0s.2ar1e),dmesaigrkneadteadstothbeevAerGtiNca,lHdyabsrhiedd,alinndesS.FTGheclaresdsi,figerdeeans,qaTnIRd.blue Ffuingcutrioen2o.fTthheesrteesllta-frrammaessMnoUrm−alMizBed(1co.4rreGcHtezdlfuomridnuosstityexdtienncstiitoynf)oarsalal https
radio-confirmedgalaxies(blackdots)inthefiveLSSs.Theredandblue ://a
(Lemauxetal.2014b),withqTIR tobeaffectedupto20percent. dashedlinesareusedtoseparatevariousradiosub-classesinthecolour– ca
d
However,noneofourresultsaresensitivelychangedatthislevel. SRL scheme. Dots with orange open pentagons are radio galaxies with e
m
inBFyigfi.t1ti,nwgeaadroeubableleGtaoussseipaanramteodrealditootghaelaqxTiIeRshiinsttoogAraGmNshdoowmn- lmoogn(Ld1s.)4GarHez)co>lo2u3re.8d.bDyottshewiritqhToIRpecnlamssairfikceartsio(nsqmuaertehso,dt,riaanndglaerse,aunsedddsiae-t ic.ou
thecolour–SRLcriteria. p
inatedandstar-formation-dominatedregions.Radiogalaxieswith .c
thehigherq Gaussianfitting,centredatq =2.25(σ =0.21), om
representtheTIRSF-dominatedpopulation,whiTlIeRtheGaussianfitting Tsaambplele5i.neNaucmhbLeSrSos.f AGNs, Hybrids, and SFGs in the radio confirmed /mn
with lower qTIR, centred at 1.50 (σ = 0.60) includes the AGN- ras
dwoimthi<naqted p>op=u2la.1ti6o±n.0O.0u8rasttazr∼fo1r,muastiinognaGcaoumspsilaentefisttteilnlagr-amgraesess- Field Total AGNs Hybrids SFGs /artic
selectedT(IMR∗≥1010M(cid:5))sampleofSFGsat0<z<2.3(Magnelli SC1604 41 14 17 10 le/4
SG0023 8 2 3 3 7
et al. 2015). Since there is a wide overlap between the AGN and 2
lSoFwreergGioanuss,swiaen)c,hSoFoGsestAoGhNavetoqhav≥eq2T.I2R5<,an1d.5H0y(bthriedcsetnotpreopoufltahtee SRCX1J3127457 235 112 61 81 /1/998
theintermediateregionof1.50<TIRq <2.25. RXJ1821 12 4 5 3 /40
Plotting these 107 radio galaxieTsIRin the rest-frame MU − MB Total 90 33 32 25 622
wbveeertwssueestenLth1te.4hGesHetzph/arMerae∗ti(roMand(cid:5)iloi)npe(oss,epeumlFaatirigko.end2s)a,cslwadsesaifsfioheuednddbliyaneqcslTeIiRan.rTFseihgpe.arre2af,toifrooenr, tihfewseeicnosntedadstadgroepatshewrealld.ioThluums,inoousritryescurlittseraiarefolarrAgeGlyNucnlaasffseifictcead- 06 by gu
e
sfuerrvtheesrausstehaesgarocluansdsitfircuathtiofonrctrhiteerriaadiinotchleasfsuilfilcraatdiioons,awmepcleo.uIlfdqtTeIsRt tviaolnu.eWofemfoasusn-dwethigahttaedferwadiSoFlGumsiannodsiHtyy,vbarildusesaareslparregseeanstmatanlayrgoef st on
therelevanceofouralgorithmbyadoptingprecisionandrecall.4 AGNs.Theselargevaluesare,however,theresultofthesegalaxies 11
havinglowerstellarmassvaluesthantheirradioAGNcounterparts. M
a
Weshouldnotethatspectroscopicincompletenessmightaffectour rc
h
4.3 ResultofAGN/Hybrid/SFGclassificationandbias radio sample, specifically we are likely underestimating the per- 2
0
Using the above two-stage classification, we classified our radio centageofSFGsintheradiosample.Howeverthiswillnotaffect 23
ourconclusionsaswewilldiscussinSection5.
galaxysampleintothreesub-samples:AGN,Hybrid,andSFG.This
classificationisintendedtoidentifytheprocessdominatingtheirra-
dioemissionanddoesnotnecessarilyexcludetheexistenceofother 4.4 X-raycrossmatch
sub-dominant components. We show the classification result in a
Cross-matchingradiogalaxieswithX-rayconfirmedAGNs,drawn
colour–SRLdiagraminFig.2.Thenumberofeachsub-classare
from Rumbaugh et al. (2016), we found a total of five out of 89
summarizedinTable5.Wenoticethat95percentofAGNselected
inthefirststagewithlog(L )>23.8areclassifiedasAGNin radiogalaxieshaveX-raycounterparts(seeTable6).Threeofthese
1.4GHz
areclassifiedasAGNsinourtwo-stageradioclassificationscheme,
consistentwithAGNemittingatbothwavelengthregimesandin
linewithotherstudies(e.g.Hickoxetal.2009;Lemauxetal.2014b).
4Theprecisionisthefractionofthenumberofsourcesbeingselectedina
Interestingly, one of the X-ray AGN is classified as Hybrid and
givensub-classinbothqTIR andcolour–SRLoverthenumberofsources
selectedusingcolour–SRLforthatsamesub-class.Recallisthefractionof another one as SFG. This may be explained by the host galaxy
thesamenumeratorintheprecisionoverthenumberofsourcesselected having X-ray bright in nucleus activity, while the radio emission
usingqTIRforthatsamesub-class. is from concurrent star formation activity. It is also possible that
MNRAS472,998–1022(2017)
1006 LShenetal.
Table6. RadioandX-raycross-match.
Field Radio RA Dec. Radio X-ray X-rayfull log(η)b Colour Typed
ID power IDa Luminositya offsetc
SC1604 502 241.0647 43.1713 23.28 0 6.269E+43 0.871 0.038 Hybrid
SC1604 568 241.1076 43.2126 23.67 2 2.111E+43 0.584 0.160 AGN
SC1604 681 241.1567 43.1494 24.30 6 6.175E+42 0.871 0.038 AGN
RXJ1821 198 275.2819 68.3941 23.72 2 6.240E+42 −0.418 0.336 AGN
RXJ1821 237 275.3494 68.4424 23.15 0 7.728E+42 0.215 0.375 SFG
aX-rayIDandfull-bandluminosityadoptedfromRumbaughetal.(2016).
blog(η)parameterisdescribedinSection5.5.
cColouroffsetparameterisexplainedinSection5.1.
dThetypeofradiogalaxyisbasedonourtwo-stageclassificationscheme.
D
Table7. Summaryofaveragepropertiesofthethreeradiopopulations. o
w
n
Radio (cid:11)Colour(cid:12)a Colour log((cid:11)M∗/M(cid:5)(cid:12))c log((cid:11)η(cid:12))d log((cid:11)1+δgal(cid:12))e log((cid:11)L1.4GHz(cid:12)) loa
type offsetb de
d
AGN 4.62 0.10 11.16±0.03 −0.74 0.67 24.01±0.05 fro
m
Hybrid 3.38 -0.74 10.74±0.07 −0.55 0.58 23.21±0.02 h
SFG 3.36 -0.71 10.95±0.03 −0.51 0.48 23.21±0.02 ttp
s
aMedianvalueofrest-frameMNUV−Mr. ://a
bMedianvalueofcolouroffsetparameter,derivedinSection5.1. ca
cWithstandarderrorofthemedianlisted. de
dη=Rproj/R200×|(cid:9)ν|/σν,seeexplanationinSection5.5. mic
eSeeexplanationonlog(1+δgal)inSection5.5. .ou
p
.c
Table8. Summaryofp-valuesfromK-Stest. o
m
/m
Styapmeaple–sample Colourb Cofoflsoeutcr log((cid:11)M∗/M(cid:5)(cid:12)) log((cid:11)η(cid:12))d log((cid:11)1+δgal(cid:12))e log((cid:11)L1.4GHz(cid:12)) nras
/a
AGN–Hybrid 10−5 10−6 10−3 0.44 0.10 10−11 rtic
AGN–SFG 10−8 10−6 0.01 0.10 0.24 10−9 le/4
Hybrid–SFG 0.18 0.09 0.05 0.66 0.91 0.93 72
Hybrid–mixed6 10−6 0.02 10−4 0.09 0.08 10−4 /1
Radio–spec 0.004 0.006 10−14 0.49 0.15 – /99
8
aTwocomparedgalaxysamples. /40
bRest-frameMNUV−Mr. 622
cColouroffsetparameter,derivedinSection5.1. 0
6
dη=Rproj/R200×|(cid:9)ν|/σν,seeexplanationinSection5.5. by
eSeeexplanationonlog(1+δgal)inSection5.5. gu
fAsampleofmixtureofAGNandSFGs,drawnwiththesamenumberofgalaxiesintheHybridpopulationfromAGNandSFGpopulationsfor100trials, e
s
allowingtherelativenumberofAGNandSFGtovaryineachdraw. t o
n
1
1
X-ray dominated in one stage of the AGN evolution, while radio thehostgalaxiesaresignificantlydifferentamongthesethreeradio M
dominatedinalaterstage(Hickoxetal.2009). galaxypopulations. a
rc
h
2
0
2
5 RADIO GALAXY AND HOST PROPERTIES 3
5.1 Radiogalaxycolours
Withtheseclassificationsinplace,wearenowabletobeginadeep
analysisofdifferentpopulationsofradiogalaxiestocomparethe We use a two-colour selection technique proposed by Williams
propertiesofAGNs,Hybrids,andSFGs.Wehavecombinedallradio et al. (2009) to divide the galaxies into two categories: qui-
galaxiesinthefiveLSSforacomplete,statisticalanalysisofradio escent and star-forming (SF). We adopt the rest-frame of
galaxies across a variety of environments in the redshift range of M − M versus M − M colour–colour diagram following
NUV r r J
0.65≤z≤0.96.Witharelativelysmallredshiftrange,wechoose separationlinesfromLemauxetal.(2014b),wheregalaxieswith
to ignore redshift-driven evolutionary effects. In this section, we M −M >2.8(M −M)+1.51andM −M >3.75are
NUV r r J NUV r
showthepreferencesofthethreesub-classesofradiohostgalaxies consideredquiescent.Weshowthecolour–colourdiagramforspec-
in terms of optical colour, stellar mass, radio luminosity, spectral troscopicallyconfirmedmembers(blackdots)andradiogalaxies,
properties,andenvironments.Wesummarizemedianvaluesofthese markedwithcolouropensquaresdependingontheirradiotype,in
properties for the three radio populations in Table 7 and present Fig.3,toppanel.Theadvantageofcolour–colourdiagrams,rather
theresultsofKolmogorov–Smirnovstatistic(K-S)testscomparing than colour–magnitude, is that dusty SFGs move to the right top
eachpairofpopulationsforallpropertiesinTable8.Wefindthat along a diagonal axis, instead of mixing with quiescent galaxies.
MNRAS472,998–1022(2017)
RadiogalaxiesinLSSsatz∼1 1007
selection criteria, although the radio luminosity criteria does not
limitradioAGNhoststobeonlyredgalaxies.Inaddition,wenote
thatredderindust-correctedM −M doesnotnecessarilyrequire
U B
galaxiestobeclassifiedasquiescentintheM −M/M −M
NUV r r J
colour–colourdiagram,asevidencedbythelargenumberofHybrid
galaxieswhicharesituatedintheSFlocusofthisdiagram.SFGs
are narrowly displayed in the dusty active region, with none of
theSFGslocatedinthequiescentregionconfirmingthatSFGsin
radiosamplesrepresentadustySFGpopulation.Thecolouroffset
histogramofHybridhostgalaxiesshowsthatmostarelocatedin
theSFregionandextendstolowervaluesthanthatofSFGs.
WeemployedtheK-StestontheAGN,Hybrid,andSFGsamples
to test whether any two are consistent with being draw from the
same distribution. The two tailed p-value result of the K-S test
D
givestheprobabilitythattwodistributionsaredrawnfromthesame o
w
distribution.Inthispaper,weadoptthatifthep-value>0.1,we n
lo
cannot reject the hypothesis that the two distributions are drawn a
d
from the same distribution. Otherwise, we say the probability of ed
drawingfromthesamedistributionisverysmall.Wenotethatnone fro
oftheresultswillchangemeaningfully ifweusep-value=0.05 m h
asthethreshold.Thep-valuebetweenthecolouroffsetdistribution ttp
of AGNs and SFGs (or Hybrids) is ∼10−6, which confirms that s://a
AGNhostgalaxiesaredifferentfromHybridsandSFGs.Thehost c
a
galaxiesofSFGandthoseofHybridpopulationsaresimilar,with de
p-value of ∼0.1. Therefore, here, we are not able to confirm a mic
differencebetweenHybridsandSFGs. .o
u
WealsotestedwhethertheHybridpopulationcouldbeamixture p.c
o
ofAGNandSFGs.Wedrew100sampleshavingthesamenumber m
ofgalaxiesaswereintheHybridpopulationfromAGNandSFG /m
n
population,allowingtherelativenumberofAGNandSFGtovary ra
s
ineachdraw.WerantheK-Stestforeachsampleandreturnedthe /a
FMirg−ureM3J.).DTootps:athreesrpeesct-tfrroasmcoepciocalolluyr–ccoonlfiorumreddiamgreammb(eMrsNiUnVth−efiMvrevLeSrsSuss. mofotdheeopf-vpa-lvuaelsu)e.sT(hseeereAspuplteanndtivxalAuefworasth0e.0d2e,fisntritoinognlyofsuthgegemstoindge rticle/4
Radiogalaxiesaremarkedwithopensquares,colouredbytheirtype.The that the Hybrid population is not a mixture of AGN and SFGs, 72
solidlinesshowtheadopteddivisionsbetweentheSFandquiescentgalaxy theoneexceptionbeingthefewcaseswhereSFGsdominatedthe /1/9
populations.Theleftupperregionisthequiescentregion,andtherightlower comparisonsample. 98
regionistheSFregion.Thearrowrepresentsthemovementinthephase However, if we want to compare the percentage of each radio /40
spacewhenastellarcontinuumextinctionofEs(B−V)=0.3isapplied sub-class of the total radio sample, we may be biased by the in- 62
(cmbCoyenamtlfihzrbeemettnreisude)m,tmaabnlee.dmr20rboa0efd0rirs)oa.(-dBbciloooan-tcctfikoormnlmifin1ered:m,csgeocadlalolaguexadrileoabsfxyf(isethehsate)th.ctihoBsettooadtlgtcnoroaummlmo2ubo:refrhcsopiosleftocosutgprrroeacosmctfrfoo,spessictccoaahpllielsiydc- cMseonNmUtapVtliev−teenwMehsrsecnoofMlooNuuUrr,Vstph−eecMstrpores≤cctor2op.si5cco(spsueircevesmya,omsrpeinledceeb,taeaiclcocomonredtseinsugtninrtegopttrhheee- 206 by gue
tpohgortaommeotfripchmoteommbeetrrisc),maenmdbraedrsio(-bplhaocktslainmep,lseca(lheadtcbhyedthceotlootuarlhniusmtobgerarmof, sthpeectwtrooshciosptoicgrraemprseisnenthtaetibvoetntoemsspinanAelpopfeFndigix.3B,w).eInpltohtethleowcoelrouorf st on
scaledbythenumberofradio-photsample).Positivevaluesrepresentobjects offsethistogramforphotometricmembersandthethreesub-classes 11
inthequiescentregion. fromtheradio-photsample,usingthesameclassificationscheme M
a
(AGN-phot,Hybrid-phot,andSFG-phot).AsshowninFig.3,there rc
h
Thisisatypicallimitationwhenperforminganalysissolelywitha isabimodaldistributionforphotometricmembers,howevertheSF 2
0
colour–magnitudediagram. peakisabsentforthespectroscopicallyconfirmedmembers.This 23
We generate a colour offset histogram in the bottom panel of isconsistentwithourspectroscopicsamplenotbeingrepresenta-
Fig.3,withtheupperofthetwohistogramsfortheradio-confirmed tiveofallgalaxiesatbluercolours.Asforradiogalaxies,although
members and the lower for the radio-phot sample, where ‘colour addingthez selectedradiogalaxiesincreasesthetotalradiosam-
phot
offset’istheperpendicularoffsetfromquiescentandSFseparation ple,thecoverageanddistributionofeachradiosub-populationin
line,withpositiverepresentinggalaxyinthequiescentregion.With thecolouroffsetdoesnotchange.Thisindicatesthatspectroscopic
thehelpofthecolouroffset,weareabletoquantitativelyexamine incompletenessdoesnotbiasourresultsfordifferenttypesofra-
thedistributionofradiosub-classeslocatedinthe2Dcolour–colour diogalaxies.Hence,weconfirmthatAGNsareredandquiescent
diagram.Intheradioconfirmedmemberscolouroffsethistogram, galaxies,SFGsarebluer,activeSFGs,andHybridsaredispersedin
weseeaseparationbetweenthepopulationofAGNhostgalaxies colour,thoughwithaslightpreferencetolieintheSFregion.
andSFGhostgalaxies.72percentoftheAGNsamplehascolour
offsetabovezero(i.e.inthequiescentregion).Asmallfractionof
5.2 Stellarmass
theAGNinhabitingtheSFregion,andmostofthemareclosetothe
dividingline(colouroffset<−0.5).AGNsarefoundtobehosted The phenomenon of ‘mass quenching’ results in galaxies with
largely by red, quiescent galaxies, as we expect from our second higher stellar masses being observed with higher quiescent
MNRAS472,998–1022(2017)
Description:Received 2017 July 31; in original form 2017 February 14. ABSTRACT (Malavasi et al. 2015) at least for radio galaxy at log(M∗/M⊙) > 10 set of spectroscopically confirmed members and separate them into Bell E. F., McIntosh D. H., Katz N., Weinberg M. D., 2003, ApJS, 149, 289. Bell E. F. et