Table Of ContentSpringerBriefs in Physics
Ralf Blossey
The Poisson-Boltzmann
Equation
An Introduction
SpringerBriefs in Physics
SeriesEditors
BalasubramanianAnanthanarayan,CentreforHighEnergyPhysics,Indian
InstituteofScience,Bangalore,Karnataka,India
EgorBabaev,DepartmentofPhysics,RoyalInstituteofTechnology,Stockholm,
Sweden
MalcolmBremer,H.H.WillsPhysicsLaboratory,UniversityofBristol,Bristol,
UK
XavierCalmet,DepartmentofPhysicsandAstronomy,UniversityofSussex,
Brighton,UK
FrancescaDiLodovico,DepartmentofPhysics,QueenMaryUniversityof
London,London,UK
PabloD.Esquinazi,InstituteforExperimentalPhysicsII,UniversityofLeipzig,
Leipzig,Germany
MaartenHoogerland,UniversityofAuckland,Auckland,NewZealand
EricLeRu,SchoolofChemicalandPhysicalSciences,VictoriaUniversityof
Wellington,Kelburn,Wellington,NewZealand
DarioNarducci,UniversityofMilano-Bicocca,Milan,Italy
JamesOverduin,TowsonUniversity,Towson,MD,USA
VesselinPetkov,Montreal,QC,Canada
StefanTheisen,Max-Planck-InstitutfürGravitationsphysik,Golm,Germany
CharlesH.T.Wang,DepartmentofPhysics,UniversityofAberdeen,Aberdeen,UK
JamesD.Wells,DepartmentofPhysics,UniversityofMichigan,AnnArbor,MI,
USA
AndrewWhitaker,DepartmentofPhysicsandAstronomy,Queen’sUniversity
Belfast,Belfast,UK
SpringerBriefsinPhysicsareaseriesofslimhigh-qualitypublicationsencompassing
the entire spectrum of physics. Manuscripts for SpringerBriefs in Physics will be
evaluatedbySpringerandbymembersoftheEditorialBoard.Proposalsandother
communicationshouldbesenttoyourPublishingEditorsatSpringer.
Featuring compact volumes of 50 to 125 pages (approximately 20,000–45,000
words),Briefsareshorterthanaconventionalbookbutlongerthanajournalarticle.
Thus,Briefsserveastimely,concisetoolsforstudents,researchers,andprofessionals.
Typicaltextsforpublicationmightinclude:
•
Asnapshotreviewofthecurrentstateofahotoremergingfield
•
Aconciseintroductiontocoreconceptsthatstudentsmustunderstandinorderto
makeindependentcontributions
•
Anextendedresearchreportgivingmoredetailsanddiscussionthanispossible
inaconventionaljournalarticle
•
Amanualdescribingunderlyingprinciplesandbestpracticesforanexperimental
technique
•
An essay exploring new ideas within physics, related philosophical issues, or
broadertopicssuchasscienceandsociety
Briefsallowauthorstopresenttheirideasandreaderstoabsorbthemwithminimal
time investment. Briefs will be published as part of Springer’s eBook collection,
withmillionsofusersworldwide.Inaddition,theywillbeavailable,justlikeother
books, for individual print and electronic purchase. Briefs are characterized by
fast,globalelectronicdissemination,straightforwardpublishingagreements,easy-
to-usemanuscriptpreparationandformattingguidelines,andexpeditedproduction
schedules.Weaimforpublication8–12weeksafteracceptance.
Ralf Blossey
The Poisson-Boltzmann
Equation
An Introduction
RalfBlossey
CNRS
UniversityofLille
Villeneuved’AscqCedex,France
ISSN 2191-5423 ISSN 2191-5431 (electronic)
SpringerBriefsinPhysics
ISBN 978-3-031-24781-1 ISBN 978-3-031-24782-8 (eBook)
https://doi.org/10.1007/978-3-031-24782-8
©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2023
Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether
thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse
ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and
transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar
ordissimilarmethodologynowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook
arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor
theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany
errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional
claimsinpublishedmapsandinstitutionalaffiliations.
ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG
Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
Tostudents,colleagues,friendsandfamily
Preface
ThisshortbookisintendedtoprovideaconciseintroductionintoPoisson-Boltzmann
theory(oftenshort:PBtheory).Theoryseemsabigwordhere,andthefirstquestion
asked may be whether Poisson-Boltzmann theory actually is a theory, or rather a
modeling approach. The readers will find my answer upon reading and working
throughthebook.
WhatisPoisson-Boltzmanntheoryabout?Thereaderswillseethatwhatthisbook
contains(tolowestorder)isessentiallyasetoftoolsthatallowtosolvetheMaxwell
equation
∇·D=(cid:2)
wherebyDisthedielectricdisplacementfield,and(cid:2)thedensityofcharges.Wewill
mostly consider simple geometries, typically of planar type, like a single wall or
a slitor channel containing electric charges with density (cid:2) that will be both fixed,
typically on the system boundaries, and ‘mobile’—dissolved charges in the bulk
liquid—aprototypicalelectrolyte.Inthelattercase,thechargedensity(cid:2) generally
turnsintoanonlinearfunctionoftheelectrostaticpotential,andtheensuingequation
becomesaninvolveddifferentialequationoftheelectrostaticpotential.
Thisverybasicsystemsetupis,atthesametime,ofanincrediblegeneralityin
softmatter,physico-chemicalandbiophysicalsystems.Electrolytesystemsbounded
by charged surfaces are in a sense ‘elementary building blocks’ in these contexts.
Ontheotherhand,despitethisgenerality,theyarealsoofanenormousrichnessand
diversity,necessitatingextensionsofthebasicPoisson-Boltzmanntheorywhichhas
notseenanend,andmostlikelywon’t.
The material in this book is arranged in three chapters. Chapter 1 introduces
thePoisson-Boltzmannequationstraightawayforthecaseof(1:1)salt,i.e.,anelec-
trolytecontainingdissolvedmonovalentions,e.g.,thecaseofsodiumchloride,NaCl,
dissolvinginNa+ andCl–.Herewediscusstherelevantphysicallengthsscalesand
thebehaviorofthesolutionstothePBequationinplanar,cylindricalandspherical
geometries. We also show how Poisson-Boltzmann equations can be obtained for
vii
viii Preface
morecomplexfluidswithinvolvedequationsofstate,andwewillshowthatspatial
densityvariations,astheyoccur,e.g.,inionicliquids,giverisetoPoisson-Boltzmann
equationsofhigherorder.
Chapter 2 goes one step further. Here, we now derive the Poisson-Boltzmann
equation from a systematic statistical physics approach which allows us to show
thatitisthesaddlepointofthefield-theoreticpartitionfunction.Thisapproachwill
enableustogobeyondmeanfieldandconsidertheone-loopcorrectiontoitssolution.
Asanapplication,wecomputethesurfacetensionofanair/electrolyteinterface,asa
classicprobleminthefieldofsoftmatterelectrostaticswhichwasfirstdiscussedin
the1930s.Wethenintroduceavariationalmethodthatallowstoderiveafluctuation-
correctedPoisson-Boltzmannequationandprovideafirstillustrativeapplicationof
themethodfortheinteractionofachargedpolymerwithalike-chargedmembrane.
Chapter 3 addresses the problem of going beyond the structureless solvent
described solely by its macroscopic dielectric constant in PB theory. To make
the solvent properties ‘explicit’, we first introduce a phenomenological approach
by introducing a wave vector-dependent dielectric function or permittivity. Subse-
quently, we discuss a microscopic model of a Poisson-Boltzmann equation with
explicitsolventmodeledbypointdipoles,beforeturningthepointdipolesintofinite-
sizemolecules.Thisapproachallowsustodetermine,e.g.,amodeleffectivedielectric
function,firstinamean-fieldapproach.Wethenapplythevariationalapproachfrom
Chap. 2 to a Hamiltonian adapted to the slit geometry already discussed in stan-
dardPoisson-BoltzmanntheoryinChap.1.Ultimately,weprovidesolutionstothe
variationalequationsforthisHamiltonianinspecialcasesanddiscusstheresulting
physics.And,finally,weconcludeonthecontentsofthisbook.
Theauthorofthisbookofcoursehopesthatitwillbeusefultoitsreaderswho
wish to start with Poisson-Boltzmann theory but also like to go beyond the most
basiclevelsalready.Anunderstandingofthermodynamicsandstatisticalphysicsat
anadvancedlevelisrequired.Workingthroughitshouldbeseenasamountaineering
effort:thechallengegrowswitheachchapter,sometimessomemoreeasygoingpaths
emerge,butthenitmightbecomesteepagain.Reachingthetopisarewardwellworth
takingthepath.Forthosewhoarewillingtoevenlookonforthenextchallenge,I
haveprovidedseveralsuggestionsforfurtherreadingattheendofeachchapter.
Lille,France RalfBlossey
November2022
Acknowledgements
Itisapleasuretothankmycollaboratorsandcolleaguesforshapingmyviewofthe
subject.IprofitedfrommanydiscussionsovertheyearswithHélèneBerthoumieux,
Markus Bier, Sahin Buyukdagli, Fabrizio Cleri, Guillaume Copie, Marc Delerue,
RalfEverarers,AndreasHildebrandt,MarcLensink,AnthonyMaggs,ArghyaMajee,
RolandNetz,HenriOrland,FabienPaillusson,RudiPodgornik,Emmanuel Trizac
andmanyothers.AndreasHildebrandtistobeparticularlycreditedwiththework
onphenomenologicalnonlocalelectrostaticsperformedduringhisPh.D.atSaarland
University,asisSahinBuyukdagliforresultsonthesolvent-explicitdipolarnonlocal
electrostaticsdiscussedinthisbook,obtainedduringanextraordinarilyproductive
postdoctoralstayinLille.
ix
Contents
1 ThePoisson-BoltzmannEquation ................................. 1
1.1 LengthScales .............................................. 1
1.2 ThePoisson-BoltzmannEquationfor(1:1)Salt ................. 3
1.3 Solution of the Poisson-Boltzmann Equation
fortheSingle-PlateGeometry ................................ 4
1.4 SlitGeometry .............................................. 7
1.5 ThePoisson-BoltzmannEquationinCylindricalandSpherical
Geometry ................................................. 12
1.6 GeneralizedPoisson-BoltzmannEquations ..................... 15
1.7 AHigher-OrderPoisson-BoltzmannEquation .................. 17
1.8 Summary ................................................. 23
1.9 FurtherReading ............................................ 24
References ...................................................... 24
2 Poisson-BoltzmannTheoryandStatisticalPhysics .................. 27
2.1 ThePartitionFunctionofaCoulombGasofInteractingIons ..... 27
2.2 Mean-FieldTheory ......................................... 31
2.3 One-LoopCorrection ....................................... 33
2.4 TheFreeEnergyandtheSurfaceTension ...................... 38
2.5 TheVariationalMethod ..................................... 42
2.6 A Charged Polymer Interacting with a Like-Charged
Membrane ................................................. 45
2.7 Summary ................................................. 50
2.8 FurtherReading ............................................ 51
References ...................................................... 52
3 Poisson-BoltzmannTheorywithSolventStructure ................. 53
3.1 NonlocalElectrostatics ...................................... 53
3.2 TheDipolarPoisson-BoltzmannEquation:APoint-Dipole
Theory .................................................... 57
3.3 Finite-SizeDipoles ......................................... 59
xi