Table Of ContentINTERNATIONALSERIES
OFMONOGRAPHSONPHYSICS
SeriesEditors
J.BIRMAN CityUniversityofNewYork
S.F.EDWARDS UniversityofCambridge
R.FRIEND UniversityofCambridge
M.REES UniversityofCambridge
D.SHERRINGTON UniversityofOxford
G.VENEZIANO CERN,Geneva
INTERNATIONALSERIESOFMONOGRAPHSON
PHYSICS
125 S.ATZENI,J.MEYER-TER-VEHN:Thephysicsofinertialfusion
124 C.KIEFER:Quantumgravity
123 T.FUJIMOTO:Plasmaspectroscopy
122 K.FUJIKAWA,H.SUZUKI:Pathintegralsandquantumanomalies
121 T.GIAMARCHI:Quantumphysicsinonedimension
120 M.WARNER,E.TERENTJEV:Liquidcrystalelastomers
119 L.JACAK,P.SITKO,K.WIECZOREK,A.WOJS:QuantumHallsystems
118 J.WESSON:Tokamaks3/e
117 G.E.VOLOVIK:Theuniverseinaheliumdroplet
116 L.PITAEVSKII,S.STRINGARI:Bose–Einsteincondensation
115 G.DISSERTORI,I.G.KNOWLES,M.SCHMELLING:Quantumchromodynamics
114 B.DEWITT:Theglobalapproachtoquantumfieldtheory
113 J.ZINN-JUSTIN:Quantumfieldtheoryandcriticalphenomena,Fourthedition
112 R.M.MAZO:Brownianmotion:fluctuations,dynamics,andapplications
111 H. NISHIMORI: Statistical physics of spin glasses and information processing:
anintroduction
110 N.B.KOPNIN:Theoryofnonequilibriumsuperconductivity
109 A.AHARONI:Introductiontothetheoryofferromagnetism,Secondedition
108 R.DOBBS:Heliumthree
107 R.WIGMANS:Calorimetry
106 J.KÜBLER:Theoryofitinerantelectronmagnetism
105 Y.KURAMOTO,Y.KITAOKA:Dynamicsofheavyelectrons
104 D.BARDIN,G.PASSARINO:Thestandardmodelinthemaking
103 G.C.BRANCO,L.LAVOURA,J.P.SILVA:CPviolation
102 T.C.CHOY:Effectivemediumtheory
101 H.ARAKI:Mathematicaltheoryofquantumfields
100 L.M.PISMEN:Vorticesinnonlinearfields
99 L.MESTEL:Stellarmagnetism
98 K.H.BENNEMANN:Nonlinearopticsinmetals
97 D.SALZMANN:Atomicphysicsinhotplamas
96 M.BRAMBILLA:Kinetictheoryofplasmawaves
95 M.WAKATANI:Stellaratorandheliotrondevices
94 S.CHIKAZUMI:Physicsofferromagnetism
91 R.A.BERTLMANN:Anomaliesinquantumfieldtheory
90 P.K.GOSH:Iontraps
89 E.SIMÁNEK:Inhomogeneoussuperconductors
88 S.L.ADLER:Quaternionicquantummechanicsandquantumfields
87 P.S.JOSHI:Globalaspectsingravitationandcosmology
86 E.R.PIKE,S.SARKAR:Thequantumtheoryofradiation
84 V.Z.KRESIN,H.MORAWITZ,S.A.WOLF:MechanismsofconventionalandhighTc
superconductivity
83 P.G.DEGENNES,J.PROST:Thephysicsofliquidcrystals
82 B. H. BRANSDEN, M. R. C. McDOWELL: Charge exchange and the theory of
ion–atomcollision
81 J.JENSEN,A.R.MACKINTOSH:Rareearthmagnetism
80 R.GASTMANS,T.T.WU:Theubiquitousphoton
79 P.LUCHINI,H.MOTZ:Undulatorsandfree-electronlasers
78 P.WEINBERGER:Electronscatteringtheory
76 H.AOKI,H.KAMIMURA:Thephysicsofinteractingelectronsindisorderedsystems
75 J.D.LAWSON:Thephysicsofchargedparticlebeams
73 M.DOI,S.F.EDWARDS:Thetheoryofpolymerdynamics
71 E.L.WOLF:Principlesofelectrontunnelingspectroscopy
70 H.K.HENISCH:Semiconductorcontacts
69 S.CHANDRASEKHAR:Themathematicaltheoryofblackholes
68 G.R.SATCHLER:Directnuclearreactions
51 C.MØLLER:Thetheoryofrelativity
46 H.E.STANLEY:Introductiontophasetransitionsandcriticalphenomena
32 A.ABRAGAM:Principlesofnuclearmagnetism
27 P.A.M.DIRAC:Principlesofquantummechanics
23 R.E.PEIERLS:Quantumtheoryofsolids
The physics of
inertial fusion
BEAM PLASMA INTERACTION,
HYDRODYNAMICS,
HOT DENSE MATTER
STEFANO ATZENI
UniversitàdiRoma‘LaSapienza’andINFM,Italy
JÜRGEN MEYER-TER-VEHN
Max-Planck-InstitutfürQuantenoptik,Garching,Germany
CLARENDON PRESS-OXFORD
2004
3
GreatClarendonStreet,OxfordOX26DP
OxfordUniversityPressisadepartmentoftheUniversityofOxford.
ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship,
andeducationbypublishingworldwidein
Oxford NewYork
Auckland Bangkok BuenosAires CapeTown Chennai
DaresSalaam Delhi HongKong Istanbul
Karachi Kolkata KualaLumpur Madrid Melbourne MexicoCity Mumbai
Nairobi SãoPaulo Shanghai Taipei Tokyo Toronto
OxfordisaregisteredtrademarkofOxfordUniversityPress
intheUKandincertainothercountries
PublishedintheUnitedStates
byOxfordUniversityPressInc.,NewYork
©S.AtzeniandJ.Meyer-ter-Vehn2004
Themoralrightsoftheauthorhavebeenasserted
DatabaserightOxfordUniversityPress(maker)
Firstpublished2004
Allrightsreserved.Nopartofthispublicationmaybereproduced,
storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans,
withoutthepriorpermissioninwritingofOxfordUniversityPress,
orasexpresslypermittedbylaw,orundertermsagreedwiththeappropriate
reprographicsrightsorganization.Enquiriesconcerningreproduction
outsidethescopeoftheaboveshouldbesenttotheRightsDepartment,
OxfordUniversityPress,attheaddressabove
Youmustnotcirculatethisbookinanyotherbindingorcover
andyoumustimposethissameconditiononanyacquirer
AcataloguerecordforthistitleisavailablefromtheBritishLibrary
LibraryofCongressCataloginginPublicationData
(Dataavailable)
ISBN 0198562640(Hbk)
10 9 8 7 6 5 4 3 2 1
TypesetbyNewgenImagingSystems(P)Ltd.,Chennai,India
PrintedinGreatBritain
onacid-freepaperby
AntonyRowe,Chippenham,Wiltshire
Foreword
Theauthorsofthisexcellentbookhaveaskedmeforabriefforeword,givingsomeemphasis
totheearlyworkonlaserfusionattheLawrenceLivermoreNationalLaboratory(LLNL).
This work was motivated by the possibility that lasers could create states of matter and
thermalradiationthatweresimilartothosefoundinthermonuclearweapons; and, inthe
longer term, the possibility that a small amount of DT could be compressed and ignited
without the help of fission. The basic principles of high yield-to-weight nuclear weapon
designhadlargelybeenlearnedandputintopracticein1962,buttheintriguingchallenge
of‘purefusion’remained.
Meanwhile in the Summer of 1961, the technique of cavity ‘Q-spoiling’ was demon-
strated at the Hughes Research Laboratory at Malibu, and applied to produce powerful
short-duration light pulses with the ruby laser that also had been invented there in 1960.
At the same time at the American Optical Company it was shown that a laser could be
madewithanyoneofanumberofrare-earthoxidesdissolvedinglass,insteadofruby.This
madeitposibletouserelativelyinexpensivematerialasthelasermedium,andofferedthe
prospectofbuildingpulsedlasersofgreatlyincreasedsizeandpower.
Asaresultofthispromisingoutlook,the(then-named)LawrenceRadiationLaboratory
began an exploratory research programme in the Spring of 1962 to study the interaction
ofintenselightwithplasma,toevaluatethefeasibilityofconstructingalaserwithenough
energyandpowertoigniteDT,andtoinvestigatesuitableimplosionandignitionconfig-
urations.Preliminarycalculationssuggestedthatalaserpulseofatleast100kJofenergy
andatmost10nsdurationwouldberequired.Similarprogrammeswerebegunatseveral
Europeanlaboratories,includingtheLebedevPhysicalInstituteinMoscow,USSR,andthe
Comissariatl’EnergieAtomiqueLaboratoryinLimeil,France.
This exploratory programme continued from 1962 to 1972. Lasers considered for
possible large-scale development were the neodymium-glass and atomic-iodine lasers.
The former was chosen, and a prototype amplifier consisting of 16 face-pumped disks,
orientedatBrewster’snon-reflectingangle,wasbuilt.Thisamplifier,inamulti-passcon-
figuration, was used to amplify single 5 ns pulses for laser–plasma interaction studies.
An important result was the discovery, shared with the Lebedev Institute, of energetic
‘hot’ electrons that could cause excessive pre-heating of the DT fuel being compressed.
This effect, together with greatly improved laser/target coupling obtained with light of
shorter wavelength, led to the use of the third harmonic of the laser light to drive target
implosions.
The close relation between the physics of the H-bomb and the physics of inertial
confinement fusion (ICF) caused the United States and other nuclear weapons states to
classifysomeaspectsofICFthatwereconsideredsensitive, especiallytheimportanceof
fuel-compressionandtheuseofthermalX-raystodriveanimplosion.Theformerwasnot
declassifieduntil1971whenitwasdisclosedinaSovietpaperpresentedatameetingof
vi Foreword
theEuropeanPhysicalSocietyinEngland.Thelatterremainedclassifieduntil1981when
thefollowingstatementswereofficiallyreleased:
1. Inthermonuclearweapons,radiationfromafissionexplosivecanbecontainedandused
tocompressandigniteaphysicallyseparatecomponentcontainingthermonuclearfuel
(theTeller-Ulam‘radiationimplosion’principle).
2. InsomeICFtargetsradiationfromtheconversionoffocusedenergy(e.g.laserorparticle
beam)canbecontainedandusedtotransferenergytocompressandigniteaphysically
separatecomponentcontainingthermonuclearfuel(the‘indirect-drive’approachtoICF).
Shortly after the declassification of compression, a landmark paper was given in May
of1972attheInternationalQuantumElectronicsConferenceinMontrealbyagroupfrom
Livermore. The results of computer simulations of a direct-drive implosion of a droplet
ofliquidDTsuggestedthatcentral‘hotspot’fuelignitiontogetherwith10,000-foldfuel
compressioncouldbeachievedbyproperlyprogrammingthetime-dependenceofthelaser
powerdrivingtheimplosion;andthat60kJoflaserenergywouldbesufficienttogenerate
1800kJofthermonuclearenergy,a30-foldgaininenergy.Theseimportantresultsprompted
amajorincreaseinICFinterestbothintheUnitedstatesandabroad.
AtLivermore,adecisionwasmadetosubstantiallyincreasethesizeoftheprogramme,
andfocusattentionondevelopingthelargelasersystemneededtoachievethermonuclear
ignition by means of indirect drive. A succession of lasers of increasing size and output
energyweredevelopedandtested,leadingtothepresentconstructionofa192-beam,1.8MJ
laserattheNationalIgnitionFacility(NIF).Alaserofsimilarcapability,LaserMegajoule
(LMJ),isbeingconstructedatBordeaux,France.
TheNIFandLMJareexpectedtobecompletedin2008.Theywillprovideanunpreced-
ented capability for the laboratory study of matter at high energy density, its interaction
with intense radiation, and for meeting the long-standing challenge of ‘pure fusion’. A
relative newcomer to the field of high energy density is the ‘ultra-intense chirped-pulse
laser’capableofproducinglightatenergydensitiesordersofmagnitudegreaterthanthe
ICFlasers,andwithpossibleapplicationstoICFandnuclearphysics.
This book is indeed timely, providing as it does a lucid and comprehensive exposition
ofthePhysicsofHighEnergyDensityandInertialConfinementFusion,onthethreshold
ofthisrapidlyexpandingfieldofphysics.Theauthorsarebothfromanacademicscience
environment with no connections to weapons research. Their book may help to establish
laboratoryhighenergydensityphysicswithhighpowerbeamsasanormalbranchofplasma
physicswithmanycivilianapplications.
Pleasanton RAYKIDDER
July2003
Preface
Thisbookisdevotedtoinertialfusiontargetsandthevariousbranchesofphysicsinvolved.
Itcovershydrodynamics,hydrodynamicinstabilities,thermaltransport,radiativeandcol-
lisionalprocessesinhotdensematter,equationsofstate,plasmainteractionofhigh-power
laser and ion beams, as well as nuclear fusion reactions. The book addresses researchers
working in this field, those teaching it to students as well as students themselves. It is
intended as an introduction providing basic understanding, but also as a reference book
derivingallthekeyformulasincludingscalingexponentsandnumericalfactors.
Thebookgrewoutofhigh-powerlaserresearchinGermanyandItalyrelatedtoinertial
fusionenergy.Bothauthorsjoinedthefieldatabout1980afterthepioneeringtime,described
by Ray Kidder in the foreword. In 1980, it was clear that small fuel capsules had to be
implodedtohighdensity, butmostofthedetails, includingbasicaspectssuchastheuse
ofthermalradiation,werestillclassified.Thismeantthatmostofthephysicsingredients
hadtobedevelopedfromscratch,includingsimulationcodeswhichthenmaturedoverthe
years.
In Germany, high-power laser research was performed at IPP Garching (and later at
MPQ), directed by S. Witkowski. These early activities were upgraded in 1979, when
R.BockinitiatedresearchonheavyionfusionatGSIDarmstadtwithaclearfocusonfusion
energy.ItwasthisexperimentalenvironmentatMPQandGSIthatstronglydeterminedthe
workofoneofus(MtV).AlsotheHIBALLreactorstudy,headedbyG.KesslerfromKFK
KarlsruheandG.KulscinskifromtheUniversityofWisconsin,setthedirectionofthetarget
workformanyyears.
InItaly, researchonlaser-producedplasmaswaspursuedatLaboratorioGasIonizzati
ofCNEN(laterFusionDivisionofENEA),directedbyB.Brunelli, since1963. Agroup
of researchers, headed first by U. Ascoli-Bartoli and later by A. Caruso, performed pio-
neeringexperimentsanddevelopedthetheoryofablativepressuregeneration.Theactivity,
interruptedin1970,wasresumedaboutadecadelater,whentheconstructionoftheABC
laserwasapproved,andasmallfusion-orientedprogrammewasdevised.Justatthistime
(1978) one of us (S. A.) joined the Frascati group as a student, to prepare a thesis on
laser-drivenfusion-ignition.Thismarkedthebeginningofatwo-decadeactivityonlaser-
producedplasmaandinertialconfinementfusion(ICF),firstatENEA,andsince2000at
theUniversityofRome.
Chapters 3–5 of this book present the basic concepts of ICF: implosion, ignition, and
gain.Theyreflect(andextend)muchoftheworkperformedbytheauthorsintheearly1980s.
Atthattime,gainingautonomousunderstandingofICFwasakeyissueatourlaboratories.
ENEA-Frascaticontributedtothetheoryofhotspotignitionandgainmodels, developed
the 1D IMPLO code and designed ICF targets. S. A. acknowledges the initial guidance
ofhisthesisadvisorB.Brunelli,theearlyworkunderthedirectionofA.Caruso,andthe
cooperation with A. Giupponi and V. A. Pais. He also thanks S. Nakai and H. Takabe
for suggesting an in-depth analysis of non-isobaric configurations. The presentation of
Chapter3owesmuchtotheseminalworkbyRochestercolleagues,ledbyR.L.McCrory
viii Preface
andC.Verdon,andtoenlighteningdiscussionswithS.Bodner.Forexchangesofideason
gaincurves,wethankM.Basko,M.Herrmann,J.Lindl,M.Key,M.Tabak,andR.Piriz.
After1981,theroleofthermalradiationtodrivetargetimplosionswithhighsymmetry
graduallybecameclearertous,anditwasthentheworkofR.Sigelonhohlraumtargetsthat
determined12yearsofresearchonradiationhydrodynamicsatMPQ,culminatinginjoint
German-JapaneseexperimentsatILEinOsakawithR.SigelandH.Nishimuraasthelead-
ingscientists.LargerportionsofChapter7onthermalwaves,Chapter9onhohlraumtargets
and the sections of Chapter 10 on opacity modelling are based on results of this period.
This includes the heat wave solution (at MPQ first found by R. Pakula), simple high-Z
opacitymodelsdevelopedbyK.EidmannandG.Tsakiris, radiativelydrivenshockwave
experiments and opacity measurements performed by T. Löwer, K. Eidmann, and many
others.Thedevelopmentofthe1Dand2DMULTIcodebyR.Ramisallowedustodesign
hohlraumtargetsforheavyionfusion;inparticular,wethankJ.Honrubia,M.Murakami,
A.Oparin, R.Ramis, andTh.SchlegelfortheircontributionstoChapter9. Similarwork
was performed at ENEA Frascati, which led to the first published 1D simulation of an
indirect drive high gain target (by A. Caruso and V. A. Pais) and to analytical results on
radiationsymmetrization.Allthisworkwasdriveninsomeindirectwaybythecorrespond-
ingresearchofourLivermorecolleagues,eventhoughexplicitexchangeofresultsbecame
possibleonlyafterthedeclassificationactof1993.
Sincethemid-1980s,aspectsofsymmetryandstabilitybecamethefocusoftheoretical
andsimulationresearchatENEA-Frascati.Inparticular,thisledtothedevelopmentofthe
2DcodeDUED,resultsofwhichareessentialforChapters3,8,and12.HereS.A.wishes
tothankM.L.Ciampi,A.Guerrieri,S.Graziadei,andM.Temporalfortheircontributionto
DUEDandtothesimulationstudies.Anotherstimuluscameinthe1990sfromanEuropean
initiative to study heavy ion fusion, promoted by C. Rubbia and promptly supported by
R. A. Ricci in Italy and R. Bock in Germany. Chapter 8, on hydrodynamic instabilities,
profited strongly from discussions with a number of colleagues. In particular, we thank
H.Azechi, S.Bodner, S.Haan, N.A.Inogamov, A.R.Piriz, D.Shvarts, H.Takabe, and
J.G.Wouchuk.ThepresentationalsotakesadvantagefromthereviewpapersbyH.-J.Kull
onthepotentialflowmodelandbyR.Bettiandcollaboratorsonablativeinstabilities.
J.MtVwantstoexpresshisspecialgratitudetoS.AnisimovfromtheLandauInstitutefor
TheoreticalPhysicsinMoscow,whoprovidedinvaluableinsightandadvicetoessentially
allmattersofthisbook. ThisconcernsinparticularChapter6onhydrodynamicsandthe
fundamentalaspectsofsimilaritysolutions.TheannualGerman–Russianseminars(1984–
89),organizedontheRussiansidebyS.AnisimovandV.Fortov,gaveuscontacttoleading
RussianscientistsandaccesstotheimportantRussianliterature.Weacknowledgenumerous
discussionswithV.Fortovonshockwavesandhighenergydensityphysics. J.MtValso
acknowledgesaone-monthstayatGSIin1994,whenfirstpartsofthisbookwerewritten.
HethanksI.HofmannfromGSIformanydiscussionsonacceleratorissuesofheavyionICF
andalsoD.HoffmannandtheGSIplasmagroupfortheirsubstantialinputtoChapter11on
ionbeamstopping.ThisincludesfruitfuldiscussionswithM.BaskoandB.Sharkovfrom
ITEPMoscowaswellasT.MehlhornfromtheSandialaboratories.
BothauthorsenjoyedaguestprofessorshipatILEinOsaka(Japan),S.A.in1993,and
J. MtV in 1995. Several sections of this book are based on our lecture notes at ILE. We
bothwanttothankthedirectorsS.NakaiandlaterK.Mimaaswellasallourcolleaguesat
ILEfortheverystimulatingatmosphereattheirinstitute. DiscussionswithK.Nishihara,
M.Murakami,H.TakabeaswellasH.AzechiandY.Katoaregratefullyacknowledged.
Preface ix
J.MtVthanksGrantLoganforastayatUCBerkeleyin2003,whereChapters10and11
werefinalizedandfromwherehehadfrequentcontactstohisLivermorecolleaguestocheck
specialpartsofthebook,inparticularwithJ.Hammer,S.Hatchett,M.Herrmann,J.Lindl,
andM.Rosen. ConcerningChapter12, theauthorsowealottotherecentworkshopson
fastignitionoffusiontargetsandinparticulartoS.Hatchett,M.Key,P.Norreys,M.Roth,
andM.Tabak.J.MtVacknowledgesinparticular6yearsofmostfruitfulcooperationwith
A.Pukhovonrelativisticlaser–plasmainteractionbasedonparticlesimulations.Thisalso
comprisesK.WitteandtheMPQexperimentalcrewwithK.Eidmann,E.Fill,G.Tsakiris,
andtheirexcellentstudents.S.A.acknowledgestheskilfulcontributionto2Dfastignition
simulationsbyM.L.CiampiandM.Temporal.
Finally we are indebted to R. Bock and R. Kidder for reading the whole manuscript,
S.Anisimov,F.V.Frazzoli,andS.Hatchettfortheircommentsonspecialchapters,A.Krenz,
KeLan,Th.Schlegel,and,inparticular,Zh.M.Shengforhelpwiththefigures.
Writing this book turned out to be a fascinating, but far more time consuming task
than initially expected. It is only thanks to the patience, understanding, and support of
ourfamilies, especiallyourwivesBeatriceandHelga, thatwecouldcompletethisbook.
S. A. thanks Helga for her warm hospitality at MtV´s home in Garching; both authors
are indebted to Mrs Caterina Tomassi-Atzeni (S. A.’s mother), whose mountain home at
PetrellaLiriintheItalianAppenninsservedusasarefuge,wherewecouldworktogether
efficiently.
S.ATZENI(ROMA)
July2003 J.MEYER-TER-VEHN(GARCHING)