Table Of ContentAstronomy&Astrophysicsmanuscriptno.final (cid:13)c ESO2008
February5,2008
The nature of the X-Ray Flash of August 24 2005.
Photometric evidence for an on-axis z = 0.83 burst with continuous energy
7 ⋆
injection and an associated supernova?
0
0
2
J.Sollerman1,2,J.P.U.Fynbo1,J.Gorosabel3,J.P.Halpern4,J.Hjorth1,P.Jakobsson1,5,N.Mirabal4,D.Watson1,
n
D.Xu1,A.J.Castro-Tirado3,C.Fe´ron1,A.O.Jaunsen6,M.Jel´ınek3,B.L.Jensen1,D.A.Kann7,J.E.Ovaldsen6,
a
J A.Pozanenko8,M.Stritzinger1,C.C.Tho¨ne1,A.deUgartePostigo3,S.Guziy3,M.Ibrahimov9,S.P.Ja¨rvinen10,11,
5 A.Levan5,V.Rumyantsev12,andN.Tanvir5,13
2
1 DarkCosmologyCentre,NielsBohrInstitute,UniversityofCopenhagen,JulianeMariesVej30,DK–2100CopenhagenØ,Denmark
1
v 2 StockholmObservatory,DepartmentofAstronomy,AlbaNova,S-10691Stockholm,Sweden
6 3 InstitutodeAstrof´ısicadeAndaluc´ıa(IAA-CSIC),P.O.Box3.004,E-18.080Granada,Spain
3 4 ColumbiaAstrophysicsLaboratory,550West120thStreet,ColumbiaUniversity,NewYork,NY10027-6601,USA
7 5 CentreforAstrophysicsResearch,UniversityofHertfordshire,CollageLane,Hatfield,Herts,AL109AB,UK
1 6 InstituteofTheoreticalAstrophysics,POBox1029,N-0315Oslo,Norway
0 7 Thu¨ringerLandessternwarteTautenburg,Sternwarte5,D–07778Tautenburg,Germany
7 8 SpaceResearchInstitute(IKI),84/32ProfsoyuznayaStr,Moscow117997,Russia
0
9 UlughBegAstronomicalInstitute,Tashkent700052,Uzbekistan
/
h 10 AstrophysikalischesInstitutPotsdam,AnderSternwarte16,D-14482Potsdam,Germany
p 11 AstronomyDivision,P.O.Box3000,FIN-90014UniversityofOulu,Finland
- 12 CrimeanLaboratoryofSternbergAstronomicalInstituteMSU,Nauchny,Crimea,98409,Ukraine
o
13 DepartmentofPhysicsandAstronomy,UniversityofLeicester,Leicester,LE17RH,UK
r
t
s
a
: ABSTRACT
v
i
X Aims.OuraimistoinvestigatethenatureoftheX-RayFlash(XRF)ofAugust24,2005.
r Methods.WepresentcomprehensivephotometricR-bandobservationsofthefadingopticalafterglowofXRF050824,from11minutesto104
a daysaftertheburst.InadditionwepresentobservationstakenduringthefirstdayintheBRIKbandsandtwoepochsofspectroscopy.Wealso
analyseavailableX-raydata.
Results. TheR-bandlightcurveof theafterglow resemblesthelightcurvesof longduration Gamma-RayBursts(GRBs),i.e.,apower-law,
albeitwitharathershallowslopeofα = 0.6(F ∝ t−α).OurlateR-bandimagesrevealthehostgalaxy.Therest-frameB-bandluminosityis
ν
∼0.5L∗.Thestar-formationrateasdeterminedfromthe[OII]emissionlineis∼1.8M yr−1.Whenaccountingforthehostcontribution,the
⊙
slopeisα=0.65±0.01andabreakinthelightcurveissuggested.Apotentiallightcurvebumpat2weekscanbeinterpretedasasupernova
onlyifthisisasupernovawithafastriseandafastdecay.However,theoverallfitstillshowsexcessscatterinthelightcurveintheformof
wigglesandbumps.TheflatlightcurvesintheopticalandX-rayscouldbeexplainedbyacontinuousenergyinjectionscenario,withanon-axis
viewingangleandawidejetopeningangle(θj∼>10◦).Iftheenergyinjectionsareepisodicthiscouldpotentiallyhelpexplainthebumpsand
wiggles.
Spectroscopyoftheafterglowgivesaredshiftofz=0.828±0.005frombothabsorptionandemissionlines.Thespectralenergydistribution
(SED)oftheafterglowhasapower-law(F ∝ν−β)shapewithslopeβ=0.56±0.04.ThiscanbecomparedtotheX-rayspectralindexwhich
ν
isβ =1.0±0.1.ThecurvatureoftheSEDconstrainsthedustreddeningtowardsthebursttoA <0.5mag.
X v
Keywords. cosmology:observations—gammarays:bursts—
⋆ This paper is based on observations from a multitude of tele-
scopes,forexampleonobservationsmadewithESOTelescopesatthe
ParanalObservatory(programmeID075.D-0270)andwiththeNTT atedontheislandofLaPalmajointlybyDenmark,Finland,Iceland,
and ESO/Danish 1.5-m telescope at the La Silla Observatory. Also Norway, andSweden, intheSpanishObservatorio delRoque delos
basedonobservationsmadewiththeNordicOpticalTelescope,oper- MuchachosoftheInstitutodeAstrofisicadeCanarias.
2 J.Sollermanetal.:XRF050824
1. INTRODUCTION 2006; Wiersemaetal., 2007) andunusualburst, XRF060218,
with a very low E ∼ 5 keV (Campanaetal.,
peak
X-Ray Flashes (XRFs) are similar to Gamma-Ray Bursts
2006) showed unambiguous evidence for an associated su-
(GRBs), but with most of the fluence of the prompt emis-
pernova (e.g., Sollermanetal., 2006; Modjazetal., 2006;
sion detected in the X-ray band. Their existence as a class
Mirabaletal., 2006; Pianetal., 2006). SN2006aj associated
was suggested by Heiseetal. (2001) based on data from the
with XRF060218 clearly established the close link between
BeppoSAXsatellite.
SNe,(GRBs)andXRFs.
The high energy spectra (νF ) of the prompt emission
ν However, other XRFs with late time coverage did ap-
fromGRBsarewelldescribedbytheso-calledBandfunction
parently not show any clear evidence for a supernova bump
(Bandetal., 1993), which is composedof two smoothly con-
(Soderbergetal., 2005; Levanetal., 2005). This could point
nected power-laws. The energy at which the two power-laws
to a differencein theoriginofXRFs andthe longGRBs with
connect, E , is where most of the energy is emitted. For
peak accompanying SNe (but see the recent paper by Fynboetal.,
classicalGRBs,E istypicallyafew100keV(Preeceetal.,
peak 2006, for GRBs with no associated supernova emission), al-
2000). The spectra of the prompt emission of XRFs are also
thoughanysuchclaimhastoawaitobservationsofXRFswith
wellfittedbytheBandfunction,butwithvaluesofE below
peak a betterdetermineddistancescale.Mostofthe XRFsclaimed
.50keVandinsomecasesevenbelow10keV(Kippenetal.,
to lack SNe in the above-mentionedstudies had no measured
2003;Barraudetal.,2003).
redshifts.
Sakamotoetal. (2005) argue, in accordance with previ-
We here present data for XRF050824 for which we have
ous studies, that the spectral distributions of XRFs, X-ray
obtainedawellmonitoredopticallightcurveandasecurespec-
RichGRBsandGRBsformacontinuum,suggestingthatthey
troscopicredshift.
all arise from the same phenomenon (see also Barraudetal.,
2003, 2005). There has also been growing evidence that (at
least some) XRFs are the result of classical GRBs seen off- 1.1.XRF050824
axis(Yamazakietal.,2002,2003;Rhoads,2003;Fynboetal.,
XRF050824 was detected by the BAT instrument on-board
2004;Granotetal.,2005).
theSwiftsatellite(Campanaetal.,2005a)onAugust24.9669
Other suggestions include XRFs as either dirty fireballs,
2005UT (UniversalTimeisusedthroughoutthearticle).The
which are relativistic jets with a larger baryon load and
burst duration (T ) was 25 s, i.e., this was a long-duration
hence (assuming external shocks) lower Γ-factors than those burst.Thetotalflu9e0nceinthe15–150keVbandwas∼2.3×10−7
ofclassical GRBs (Dermeretal., 1999; Heiseetal., 2001), or ergs cm−2 (Krimmetal., 2005). The burst was also detected
XRFs as clean fireballs where (assuming internal shocks) the
by the FREGATE instrument onboard HETE-2 (Crewetal.,
spread in Γ-factors is small but the average Γ-factor is large
2005). As seen by HETE-2 the value of the fluence ratio
(Barraudetal.,2005).
S(2−30)/S(30−400)=2.7.Crewetal.(2005)estimatedE <
peak
However, there are still open questions regarding the ori-
12.7keV.GRB050824isthusclearlyanXRF.
gin of XRFs. While the connection between long GRBs and
The BAT on-board localization was reported to an accu-
certain core-collapse supernovae appears to be well estab-
racyof3arcminutes.EarlyROTSE-IIIdatadidnotdetectany
lished (Hjorthetal., 2003; Mathesonetal., 2003; Zehetal.,
new object (Schaeferetal., 2005), but our observations start-
2004), the case has not been as well defined for XRFs.
ing38minutesafterthetriggerrevealedanewobjectatR.A.=
Fynboetal.(2004)performedthefirstcomprehensiveobserva-
00:48:56.1,Dec=+22:36:32(J2000,seeSect.3.1),whichwe
tionalcampaignofanXRFopticalafterglow,forXRF030723
laterconfirmedasthecounterpart(Gorosabeletal.,2005).
(see also Butleretal., 2005). The wellsampled lightcurvefor
Inthispaperwefocusonourcomprehensiveopticalstudy
XRF030723displayedseveralinterestingfeatures:
of this afterglow. The article is organized as follows. Sect. 2
(i) Theveryearlylightcurvewasessentiallyflat, inaccor-
outlines how the optical observations were obtained and re-
dancewithmodelsforwhichXRFsareviewedawayfromthe
duced.TheresultsarepresentedinSect.3,whichincludesthe
jetaxis.
astrometry,theopticallightcurve,thespectralenergydistribu-
(ii)Thefollowingpower-lawdecaywasverysimilartothat
tion, the spectroscopicresults, data on the hostgalaxyand an
seenintypicalGRBs,suggestingacommonorigin.
analysis of available X-ray data of the afterglow. Finally, we
(iii)At∼16dayspastburstastrongbumpinthelightcurve endthepaperwithadiscussion(Sect.4)andsomeconclusions
suggested the presence of a fast rising supernova. The super- (Sect.5).
novainterpretationwasarguedto beconsistentwiththespec-
tral energy distribution (SED) evolution (Fynboetal., 2004)
and was later supported by modeling both of the afterglow 2. OBSERVATIONS
(Granotetal., 2005) and of the supernova (Tominagaetal.,
2.1.Photometry
2004).
More evidence has now been presented arguing for a Our very first observations of XRF050824 were obtained
common origin for GRBs and XRFs. XRF020903 had a with the BOOTES-1B 30 cm robotic telescope (e.g.,
late lightcurve and spectrum consistent with a supernova Castro-Tiradoetal., 2004) in southern Spain, which detected
at z = 0.25 (Soderbergetal., 2005; Bersieretal., 2006). the burst from 10.6 minutes after the high energy event in
More recently, the nearby (z = 0.0331, Mirabal&Halpern, several R-band exposures. However, since these images were
J.Sollermanetal.:XRF050824 3
Table1.TelescopesandInstruments We extracted the spectrum using standard procedures
within IRAF. Wavelength calibration was obtained using im-
Telescope Instrument/ FOV Pixelscale ages of HeNeAr lamps obtained as part of the morning cali-
CCD (arcminutes) (arcsecpixel−1) brations. Flux calibration was performedusing spectra of the
BOOTES-1B ST8E 40×26 1.6 spectrophotometricstandardstarG138-31(Oke1990).
OSN ROPER 7.92×7.92 0.232
NOT ALFOSC 6.3×6.3 0.189
NOT STANCAM 3×3 0.176
3. RESULTS
D1.5m DFOSC 13.7×13.7 0.395
MDM1.3m SITeCCD 8.6×8.6 0.508 3.1.Astrometry
MDM2.4m SITeCCD 9.4×9.4 0.275
CrAO2.6 FLI-IMG1001E 8.5×8.5 0.5 WedeterminedthecelestialpositionoftheXRF050824optical
Maidanak1.5m SITeCCD 8.5×3.5 0.266 afterglowasthemeanastrometricsolutionfoundin10OSNR-
WHT ULTRACAM 5×5 0.3 bandimages.Eachafterglowpositionisbasedon∼50USNO-
NTT EMMI 9.9×9.1 0.33 A2.0referencestarsperimage.Themeanvalueofthecoordi-
VLT FORS1 6.8×6.8 0.20
natesare:
VLT FORS2 6.8×6.8 0.25
R.A.(J2000)=00:48:56.14±0.03s,
VLT ISAAC 2.5×2.5 0.148
Dec(J2000)=+22:36:33.2±0.4′′
These astrometric errors include the 0.25′′ systematic error
of the USNO-A2.0 catalogue (Assafinetal., 2001; Deutsch,
not processed until later, the actual discovery was instead 1999).
made via the studies we initiated 38 minutes after the burst
(Gorosabeletal., 2005) using the 1.5 meter telescope at the
3.2.TheLightcurve
ObservatoriodeSierraNevada(OSN)
We conducteda comprehensivestudy of the optical after- The photometryof the XRF was carried outusing either PSF
glowoverthefollowing100daysusingseveraltelescopesand fittingphotometry(whentheafterglowwasbright)oraperture
instruments. In Table 1 we summarize the telescopes and in- photometry(at later times when the host started to contribute
strumentsusedandprovidedetailsonthefield-of-view(FOV) significantly). We measured the magnitudes of the optical af-
andpixelscaleoftheseinstruments. terglowaswellas4starsinthefield.Therelativemagnitudes
WeusedtheESO/Danish1.54mtelescope(D1.5m)onLa weretransformedtothestandardsystemusingobservationsof
SillaequippedwiththeDFOSCinstrument,the2.56mNordic photometricstandardstars(Landolt,1992).Thelocalstandard
OpticalTelescope(NOT)onLaPalmaequippedwithALFOSC stars are marked in Fig. 1, and their magnitudes are given in
and STANCAM. We also used the 1.3 m MDM telescope (in Table 3. The zeropoint uncertainties are of the order of 0.03
August 2005) and the 2.4 m MDM telescope (in September), mag.
the Crimean Astrophysical Observatory (CrAO) 2.6 m tele- In Fig. 2 we have plotted the R-band lightcurve ranging
scopeandthe1.5mtelescopeattheMaidanakobservatory. from11minutesto104daysaftertheXRF. Thisincludesthe
Late observations were also obtained at the ESO New early detections from the BOOTES telescope (open circles).
TechnologyTelescope(NTT)atLaSillaandattheVeryLarge Thebestfitpower-lawhasaslopeofα = 0.59±0.01(F ∝
R ν
Telescope (VLT) on Paranal, Chile. A single epoch near in- t−α)andisalsoindicatedinthefigure.
frared(near-IR)KsimagewasobtainedusingtheVLT/ISAAC TheI-bandlightcurvefollowstheR-bandverywellduring
instrument. the first day when we have observations in both bands. The
The full journal of observations is given in Table 2. The slopeisconsistentwiththeR-bandlightcurve(α =0.51±0.06,
I
datawerereducedusingstandardtechniquesforde-biasingand whereasα =0.57±0.03forthesameperiod).
R
flat-fielding.
3.3.SpectralEnergyDistribution
2.2.Spectroscopy
ThemultibandobservationsofXRF050824allowedustocon-
Spectra of the source were obtained with the VLT at two structthespectralenergydistribution(SED)oftheburstatan
epochs.A 2×1500s spectrumwasobtainedonAugust25.4, epochof∼0.4days.
about0.4 days past the burst, when the afterglow had a mag- Theresultis presentedin Fig. 3 wherewe haveconverted
nitude of R≈ 20.7. We used the FORS2 spectrograph with a the B, R, I and K band magnitudesinto AB magnitudes. The
300V grism, the GG375 order separation filter and a 1.0 arc- optical and near-IR magnitudes were corrected for Galactic
secwideslitprovidingadispersionof13.3Åoverthespectral reddeningofE(B−V)=0.035mag(Schlegeletal.,1998)and
regionfrom3800Åto8900Å. transformedtofluxdensitiesusingtheconversionfactorsgiven
The following night, on August 26.3, when the afterglow byFukugitaetal.(1995)andAllen(2000),respectively.Given
hadfadedbyonemagnitude,weobtainedanotherspectrumof that the multibandobservationswere notall performedat the
6×1500sexposuretime.Theinstrumentalsetupwasidentical sameepoch,theircorrespondingfluxeswererescaledusingthe
tothatusedonthefirstnight. bestfitpowerlaw.
4 J.Sollermanetal.:XRF050824
A power-lawfit in the formF ∝ ν−β providesa tolerable Gorosabeletal.(2003),i.e.,L=0.5±0.2L intherestframe
ν ⋆
fitfortheSED.Thespectralindexisβ=0.56±0.04,assuming Bband.
negligibleextinction. The host is extended with a size of roughly 0.8 arcsec,
Unfortunately,withtheavailabledatawecannotsaymuch which at a distance of 5.24 Gpc correspondsto a linear scale
about the extinction. The SMC, LMC or Milky Way extinc- of ∼ 6 kpc. Finally,fromthe [O II] lines we can estimate the
tionlawsgiveequallygoodfitstothedata(Fig.3).Fixingthe star formation rate (SFR). The flux of this line, corrected for
redshiftat z = 0.83 (see Sect. 3.4), a free fit with an intrinsic Galacticextinction,correspondstoaSFRof1.8 M⊙ yr−1,fol-
power-lawshapeoftheSEDandanSMClikeextinctioncurve lowingKennicutt(1998).
fromPei(1992)impliesanextinctionof A = 0.4±0.2mag. Infact,usingtheextinctioncorrectedvalueforthefluxof
V
However,thiswouldgiveanunrealisticallyflatβ∼0spectrum. Hβ, and assuming a case B recombination ratio for Hα ver-
Giventhesparsedatasettheonlythingwecanfirmlyconclude sus Hβ, we can also use this line to estimate that the SFR is
is thatA is less than 0.5mag. A low value of the globalex- 1.8 M yr−1,againfollowingKennicutt(1998).Asusual,any
V ⊙
tinction is also implied by the blue color of the host galaxy slit-losseswouldincreasethisnumber.Wenotethattheconsis-
(Sect.3.5). tencyoftheHαand[OII]predictionsoftheSFRalsosupports
thenotionoflowextinctioninthehostgalaxy.
This SFR compares rather well with the estimate for the
3.4.TheSpectra
hostofGRB000210mentionedabove,whichhassimilarprop-
erties and an estimated SFR from the UV light of 2.1 ±
The combined flux-calibrated spectrum is also included in
0.2 M yr−1(Gorosabeletal.,2003).
Fig.3.Theslopeisconsistentwiththecontemporaryphotom- ⊙
The specific star formation rate for the host galaxy of
etry.
XRF050824isthusonly∼ 4 M yr−1(L/L⋆)−1.Thisisrather
We determinedtheredshiftfromthefirstnight’sspectrum ⊙
low, but not exceptional, and falls well within the popula-
(Fynboetal.,2005)usingemissionlinessuchas[OII]λ3727,
tion of smallstar-formingblue galaxiesas shownin Fig. 2 of
[OIII]λλ4959,5007andHβ.AsnotedbyFynboetal.(2005),
Sollermanetal.(2005),(seealsoChristensenetal.,2004).
wealsodetectabsorptionlinesfromMgIIatthisredshift.We
Finally,wecanestimatethemetallicityofthegalaxyusing
discuss this further below (Sect. 4.1). The lines are shown in
the R23 technique (Pagel, 1979). Using the results presented
Fig. 4 and the measured positions and fluxes of the lines are
in Table 4 and applying E(B − V) = 0.035 mag, we derive
givenin Table 4. Theredshiftisz = 0.828±0.005.Notethat
log(R )=1.0. This is quite high, and indicates a metallicity
thefluxesgiveninTable4arenotcorrectedforGalacticorhost 23
(just)belowsolar(seee.g.,Fig.5byKewley&Dopita,2002).
galaxyextinction.Theuncertaintiesinabsolutelinefluxescan
However, the small number of emission lines in the analysis
beupto30%.
makesthisestimateratheruncertain.
Using a cosmology where H = 70kms−1Mpc−1, Ω =
0 Λ The star formation rate and size thus indicates a
0.7 and Ω = 0.3, this redshift corresponds to a luminosity
m fairly normal galaxy, similar to other GRB host galax-
distanceof5.24Gpc.Thisdistancewillbeusedhereafter.
ies (e.g., LeFloc’hetal., 2003; Christensenetal., 2004;
Sollermanetal.,2005).Themetallicityconfirmsthetrendthat
3.5.TheHostGalaxy GRB host galaxies have sub-solar metallicities. The luminos-
ityisnotparticularlylowcomparedtootherGRBhosts,butis
OurlateR-bandimagefromDecember7,2005,104dayspast similartothehostofXRF050416A(Soderbergetal.,2006).
explosion, shows an extended source with magnitude R =
23.70±0.15 at the position of the afterglow.This is the host
3.6.TheX-rays
galaxy of XRF050824. An image obtained under very good
seeing conditionsatVLT in October2005is shownin Fig. 5.
Swift-XRTdidnotobservetheburstimmediatelyduetoalunar
Notethatalllateobservations(past35days)areconsistentwith
constraintand the XRT beganobservationsabout6000s after
this beingthe host, with little contributionfromthe afterglow
thebursttrigger(Campanaetal.,2005b).Wehaveanalysedthe
(orasupernova).
standardprocessedXRTdatastartingat0.4daysaftertheburst
The host magnitudeis 23.6 when correctedfor a Galactic usingversion2.3oftheSwiftsoftware.Background-subtracted
extinction of E(B− V) = 0.035 mag. At the redshift of this spectraandlightcurveswere extractedina standardwaywith
galaxy the R band corresponds to the rest frame U band. circularsourceandbackgroundextractionaperturesof30′′and
However, comparison of the absolute luminosity with other 60′′radiusforthePC-modedata.DatafromtheWT-modewere
galaxiesis often made in the rest frame B band. To do so we notusedbecausetheyaddedverylittlesignal.
need to make some assumption about the color of the host. The combined spectrum was fit with a single absorbed
Here we note that the BVR magnitudes from our latest VLT power-lawwithabsorptionattheGalacticlevel(N = 3.62×
H
data, when the host is clearly dominating the emission, are 1020cm−2, Dickey&Lockman,1990)andgaveanacceptable
very similar to the magnitudes of the host of GRB000210 fit(χ2 = 43.7for40degreesoffreedom).Addinganabsorber
(Gorosabeletal.,2003)atasimilarredshift. at the redshiftof the host galaxy gives a better fit (χ2 = 30.4
We therefore conclude that the absolute luminosity of the for39degreesoffreedom)withanequivalenthydrogencolumn
XRF050824 host is very similar to the one determined by densityofN =1.8+0.7×1021cm−2andapower-lawphotonin-
H −0.6
J.Sollermanetal.:XRF050824 5
dexβ =1.0±0.1.Theabsorptionmodelhasabundanceratios TheflatearlypartofthelightcurveofXRF030723wasin-
X
fixed at solar values. The soft X-ray absorption is dominated terpreted in terms of geometry(Fynboetal., 2004), where an
byα-chainelementsandisthereforeameasureofthemetalab- off-axisorientationcanmakeanincreasinglylargefractionof
sorptionandisregardlessofwhethertheelementsareinthegas the jet visible andthusmaintaina constant(or evenbrighten-
orsolidphase(seeWatsonetal.,2006;Turnsheketal.,2003). ing) lightcurve (Granotetal., 2005). We see no evidence for
The flux decay of the afterglow followed a single power- thisinXRF050824.It’searlylightcurveisconsistentwiththe
law with decay index, α = 0.75 ± 0.04, with the fit being same decay seen throughout the lightcurve. This can thus be
X
marginally acceptable (χ2 = 24.8 for 16 degrees of freedom, seen asevidenceforanon-axisburst,whichwouldmeanthat
null hypothesis probability = 0.07). This decay rate is some- ageometricalinterpretationdoesnotexplainthedifferencebe-
whatfasterthantheaverageslopeseenintheopticallightcurve tween XRFs andGRBs in all cases (see also Soderbergetal.,
(albeit there could be a break in the optical light curve, see 2006).
Sect. 4.2.2). Note, however, that the X-ray data are not very
constrainingatthelaterphases.
4.2.2. ABreakandaBumpintheLightcurve
4. DISCUSSION At first glance the R-band lightcurveshown in Fig. 2 appears
consistentwitha singlepower-lawdeclinethroughoutthe en-
4.1.Absorptionlineredshift tire afterglow. However, since the final points are due to the
host galaxy,the data do suggest a break in the lightcurve.As
Asnotedin Sect.3.4thespectraalsoincludeabsorptionlines
mentioned in Sect. 3.5 the host is extended, so most of the
fromMgII.Theselinesareseenatbothepochs,butaremost
light at these epochs is indeed from the galaxy. This means
clearlydetectedinthefirstepoch,whichhasthebestsignal-to-
that the single power law must be broken at an early time, or
noiseratio.ThelinesaredisplayedinFig.4,andtheredshiftis
the later pointswould have been much brighter. The break in
consistentwiththeestimatefromtheemissionlines.
thelightcurvealsomeansthatanextracomponentisneededto
That the redshift can be determined from both emission
explaintheexcesslightat10−20dayspasttheburst.
linesandabsorptionlinesisofsomeimportance.Thedistance
We embarked on simultaneously fitting two power-laws
scale of the XRFs has only recently been shown to be cos-
andastretchableSN1998bwtemplate,inaccordancewiththe
mological. The first spectroscopic redshift of z = 0.25 for
method outlined by Zehetal. (2004). Fixing the host galaxy
XRF020903 (Soderbergetal., 2005) was based on emission
magnitude, we were able to constrain a shallow break in the
linesonly.Inprinciple,asinglecasecouldbeaffectedbyasu-
lightcurvetooccurat∼0.5dayspastburst(Fig.6).Thiscould
perposedandunrelatedgalaxy,butnowXRF050416Aalsohas
be a cooling break.The requiredsupernovais rather unusual.
ameasuredemissionlineredshift(z=0.65,Cenkoetal.,2005;
In the notation of Zehetal. (2004) this is a supernova with
Soderbergetal., 2006) as has GRB/XRF030528 (z = 0.78,
k= 1.05±0.42 and s= 0.52±0.14. This is a bright and fast
Rauetal.,2005).
lightcurve and is different from the lightcurve of the canoni-
The GRB030429 studied by Jakobssonetal. (2004) also
calSN1998bw,whichisoftenassociatedwithlongGRBs,but
displayed absorption lines. It showed an E of 35 keV at a
peak
is similar to, althoughbrighterthan, the supernovaassociated
redshift of z = 2.66, and is thus a borderline case, consistent
withXRF060218.
with an X-ray Rich burst. More recently, the rather unusual
XRF060218 had a secure redshift from both emission lines The actual peak luminosity of the potential supernova is,
and absorption lines (z = 0.033, Mirabal&Halpern, 2006; however,highlyuncertain.Ifthereisinternalextinctioninthe
Wiersemaetal.,2007;Pianetal.,2006). host galaxy the corresponding supernova would have to be
Thesefindings,togetherwiththerobustredshiftdetermina- brighter, but our SED analysis shows that this can not be a
tionfortherathernormalXRF050824,havethereforeproven verylargeeffect.Thisisalsosupportedbytheratherbluecolor
thecosmologicaldistancescalefortheseobjectsbeyonddoubt. of the host galaxy, and by the deduced balmer line ratios. A
largeruncertaintyarisesfromtheassumptionsonthecontribu-
tionfromtheafterglow.WithSN1998bwejecting∼0.5 M of
⊙
4.2.TheLightcurveoftheAfterglow 56Ni(e.g.,Woosleyetal.,1999;Sollermanetal.,2000),wecan
estimate that a supernovaassociated with XRF050824would
OurR-bandlightcurveofXRF050824isoneofthebestsam-
havehadtoejectatleastontheorderof0.6±0.3 M of56Ni.
pledopticallightcurvesforanXRF.Themostconspicuousas- ⊙
This is assuming that the peak brightness scales with nickel-
pect of this lightcurve is that it is basically consistent with a
mass.
power-law for the entire duration (Fig. 2). The best fit power
lawα=0.6isquiteaslowdecay.
4.2.3. Wiggles,bumps,humpsandjitter
4.2.1. TheEarlyTimes
Infact,thefittothelightcurveisnotverysatisfactoryevenaf-
Oneof themoreinterestingaspectsofthe lightcurveis thatit terinvokingabreakandahypotheticalsupernovabump.Thisis
declinessteadilyfromveryearlyon.Thisisinstarkcontrastto seeninFig.6,wherethereducedχ2is1.8.Theentirelightcurve
thelightcurveofXRF030723(Fig.6),whichapparentlyhada of XRF050824 displays wiggles and humps throughout the
constantlightcurveforthefirstdayaftertheburst. timeoftheobservations.Thelargestdeviationsarefromasys-
6 J.Sollermanetal.:XRF050824
tematicdipintheNOTdatarelativetotheoverallfitjustbefore jet model may be unable to account for these variabilities
0.1days,andanincreaseinthescatterfrom2–5days.These (Kumar&Piran,2000),whichmayinsteadbeattributedtothe
deviationscannotbesatisfactorilyfittedbyabrokenpower-law re-activity of the central engine (e.g., Fanetal., 2005), or, as
schemethatissupposedtomodelasimpleimpulsiveshockor mentionedabove,toasupernova(Sect.4.2.2).
jet.
Anotherexampleisat0.2–0.5dayspasttheburstwhenwe
4.3.Amatirelation
haveawellmonitoredlightcurve,inparticularfromtheMDM.
ThisisshownintheinsetinFig.2.Alineardecayisnotafor- Several XRFs have been shown to follow the same relation
mallygoodfittothesedata.Thereappeartobewigglesaround as GRBs, that Epeak ∝ Ei1s/o2 (Amatietal., 2002), where Eiso
thesteadylineardecline.Sincemostoftheseobservationswere is the isotropic-equivalent radiated energy. For XRF050824,
obtained at the same telescope, and have been reduced in the wecannotdetermineaprecisetotalenergyduetothelackof
samewayagainstthesamelocalstandards,wedonotbelieve knowledgeconcerningthe peak energyof the BAT spectrum.
this is purely an instrumental effect. Although the statistical However,wecancalculatelowerandupperlimitsbyintegrat-
significanceisratherlowinourlightcurve,wenotethatsimilar ing the best fit power law spectral energy distributions in the
jittering has been observed previously in GRBs, both in long (15−150)×(1+z)keVbandandinthethefull1−104 keV
GRBs(e.g.,Gorosabeletal.,2006;Mathesonetal.,2003)and band.Weobtained4.1×1050erg< Eiso <3.4×1051erg,which
in short GRBs (Hjorthetal., 2007), and can be interpreted in whenusing the Amatirelation,wouldprovidea constrainton
termsofvariationsinthesurroundingcircumburstmediumor the observed peak energy 11keV < Eobs < 32keV. This is
peak
asdue to prolongedactivityof thecentralengine.Similar ex- thusonlyjustin agreementwiththatfromthe spectralfitting,
planationscanthusbeputforwardalsoforthisXRF. Eobs <13keV.
peak
Besides this event, the Amati relation is also
applicable to XRFs020903 and possibly 030723
4.2.4. Continuousenergyinjection
(Lamb,Donaghy&Graziani, 2005), XRF050416A
(Sakamotoetal., 2005) and XRF050406 (Schadyetal.,
Prolonged central engine activity with multiple energy injec-
2006).(SeealsoAmatietal.,2006;Ghisellinietal.,2006,for
tions could thus be the explanation for the deviations from a
XRF060218.)
perfectpower-law(Bjo¨rnssonetal., 2004). Prolongedactivity
ThatthisrelationholdsforbothXRFsandclassicalGRBs
intermsofcontinuousenergyinjectioncouldalsoexplainthe
not only implies that both classes of bursts can be on-axis
slow decline rates in both optical (α = 0.65 when corrected
R events(Amatietal.,2006)butalsosupportstheideathatboth
for host galaxy contribution) and in X-rays (α = 0.75). In
X canbeinterpretedunderaunifiedphysicalmechanism.
Fig.7weshowanexampleofamodelfortheafterglowemis-
sioninthe X-rayandtheR bandforcontinuousenergyinjec-
tion.Thismodelisdetailedbelow. 5. CONCLUSIONS
Wehavemodeledtheafterglowintermsofalong-termcon-
We have seen that the afterglows of XRFs can appear quite
tinual energy injection in the forward shock. We consider an
different.TheearlyflatopticallightcurveofXRF030723was
uniform relativistic jet undergoing the energy injection from
consistent with predictions of an off-axis burst (Fynboetal.,
the central source and sweeping up its surrounding uniform
2004; Granotetal., 2005). On the contrary, XRF050824 dis-
medium.Thedynamicalevolutionoftheoutflowiscalculated
plays an optical lightcurve which is decaying at a fairly con-
usingtheformulaeinHuangetal.(2000)andaddinganenergy
stant, but slow, rate from 10 minutes after the burst. Our
injectionprocesswiththeformdE /dt= A(t/t )−qfort <t<
inj 0 0 afterglow model indicates this to be an on-axis burst. We
t .Thefractionsofshockenergygiventotheelectronsǫ and
end e have also found some evidence for a bump in the lightcurve,
tothemagneticfieldǫ areassumedtobeconstant.
B whichisconsistentwithasupernovaasfastasthatassociated
The modelfits shown in Fig. 7 have the followingjet pa- withXRF060218,i.e,considerablyfasterthantheSN1998bw
rameters:theisotropickineticenergyEk = 1052erg,ǫe = 0.4, lightcurve.
ǫB = 0.003,thecircumburstdensityn = 0.1cm−3,theelectron Most well observed XRFs with a redshift where a super-
index p= 2.05,thehalf-openingangleθj = 0.2,andtheview- nova could be expected to emerge do show some evidence
ingangleθobs=0(i.e.,on-beamviewing),togetherwiththeen- for this. This is similar to the case for ordinary long GRBs
ergyinjectionparameters:A=3×1049erg/s,q=0.8,t0 =100 (Zehetal., 2004). A common origin for XRFs and GRBs is
s, and tend = 2 × 106 s. This rather large amount of ejected therefore likely but there also seems to be several parame-
energyis needed to explain the long and shallow decline;the ters affecting the observables of the burst. In the context of
amountissimilartothatfoundforGRB050315(Zhangetal., the four-field diagram presented by Sollermanetal. (2006),
2006). Since there is no proper jet break until possibly after XRF050824 should be in the same category as XRF020903
a week, the constrainton the jet opening angle of θj∼>10◦ is and XRF030723; XRFs with an associated supernova but
quiterobust.Wedidnotattempttofittheveryearlylightcurve. where the opticallight is dominatedby the afterglowat early
At these phases it is likely that a reverse shock componentis phases.
required. ThemountingevidenceforsupernovaeinGRBsandXRFs
We note again the late re-brightening. At such a late also shows that there is a large variety in supernova prop-
time, the ejecta is only moderately relativistic. The patchy erties (Woosley&Bloom, 2006). The emergence of super-
J.Sollermanetal.:XRF050824 7
novae much fainter (Pianetal., 2006; Sollermanetal., 2006)
and much faster (this work) than the canonical SN1998bw
put constraints on the underlying explosion model. Recently,
Fynboetal. (2006) also reported two GRBs where no su-
pernova emission is seen, down to 100 times fainter than
SN1998bw.It is still not clear whether we see two (or more)
fundamentallydifferentexplosionmechanisms,orifthereisa
verywidecontinuumofpropertiesfortheseblasts.
Acknowledgements. This paper is based on observations collected
by the Gamma-Ray Burst Collaboration at ESO (GRACE) at the
EuropeanSouthernObservatory,ParanalandLaSilla,Chile.Wethank
theESOstafffortheirhelpinsecuringtheservicemodedatareported
here.WeacknowledgebenefitsfromcollaborationwithintheEUFP5
Research TrainingNetwork”Gamma-Ray Bursts: AnEnigmaanda
Tool”. This work was also made at the DARK Cosmology Centre
funded by The Danish National Research Foundation. JS acknowl-
edges support from Danmarks Nationalbank, from the Anna-Greta
andHolgerCrafoordfundandfromKnut&AliceWallenbergfoun-
dation. CrAO and IKI acknowledge support from Russian Ministry
of Education and Science. JPH and NM acknowledge support from
theNationalScienceFoundationunder grant0206051. Theresearch
activities of JG and MJ are supported by the Spanish Ministry of
SciencethroughprojectsAYA2004-01515andESP2005-07714-C03-
03. Based in part on observations made with the BOOTES instru-
ments in South Spain (ESAt-INTA/CEDEA, Huelva) and with the
1.5m Telescope of Observatorio de Sierra Nevada (OSN), operated
byIAA/CSIC.Someofthedatapresentedherehavebeentakenusing
ALFOSC,whichisownedbytheInstitutodeAstrof´ısicadeAndaluc´ıa
(IAA) and operated at the Nordic Optical Telescope under agree-
mentbetweenIAAandtheDepertmentofAstronomyofCopenhagen
University. Thanks to Tamara Davis for very careful reading of the
manuscript,andfordetaileddiscussionsonK-corrections.Lastbutnot
least, we acknowledge support from several key observers that con-
tributedtothiswork,namelyV.BirykovandD.Sharapovaswellas
D.R.Rafferty&J.R.Thorstensen.FinallythelateHugoE.Schwarz
contributedwithobservationsandcommentsonanearlierversionof
thispaper.
8 J.Sollermanetal.:XRF050824
References Hjorth, J., Sollerman, J., Møller, P., et al. 2003, Nature, 423,
847
Allen, C. W. 2000, Allen’s AstrophysicalQuantities, 4th edi-
Hjorth,J.,etal.2007,inprep.
tion2000,ed.A.N.Cox
Huang,Y. F., Gou,L. J., Dai, Z. G. & Lu,T. 2000,ApJ, 543,
Amati,L.,Frontera,F.,Tavani,M.,etal.2002,A&A,390,81
90
Amati,L.,DellaValle,M.,Frontera,F.,Malesani,D.,Guidorzi,
Jakobsson,P.,Hjorth,J.,Fynbo,J.P.U.2004,A&A,425,785
C.,Montanari,E.,&Pian,E.2006,astro-ph/0607148
Kennicutt,R.C.1998,ARA&A,36,189
Assafin, M., Andrei,A. H., Martins,R., Vieira da Silva Neto,
Kewley,L.J.,&Dopita,M.A.2002,ApJS,142,35
D.N.,Camargo,J.I.B.,Teixeira,R.&Benevides-Soares,P.
Kippen, R. M., Woods, P. M., Heise, J., in’t Zand, J. J. M.,
2001,ApJ,552,380
Briggs, M. S., & Preece,R. D. 2003,AIP Conf.Proc.662:
Band,D.,Matteson,J.,Ford,L.,etal.1993,ApJ,413,281
Gamma-Ray Burst and Afterglow Astronomy 2001: A
Barraud,C.,Olive,J.-F.,Lestrade,J.P.,etal.2003,A&A,400,
WorkshopCelebratingtheFirstYearoftheHETEMission,
1021
662,244
Barraud, C., Daigne, F., Mochkovitch, R., Atteia, J. L. 2005,
Krimm,H.,Barbier,L.,Barthelmy,S.,etal.2005,GCN,3871
A&A,440,809
Kumar,P.&Piran,T.2000,ApJ,535,152
Bersier, D., Fruchter, A. S., Strogler, L.-G., et al. 2006, ApJ,
Landolt,A.U.1992,AJ,104,340
643,284
Lamb,D.Q.,Donaghy,T.Q.,&Graziani,C.2005,ApJ,620,
Bjo¨rnsson, G., Gudmundsson, E. H., & Johannesson, E. H.
355L
2004,ApJ,615,L77
LeFloch,E.,Duc,P.-A.,Mirabel,I.F.,etal.2003,A&A,400,
Butler,N.R.,Sakamoto,T.,Suzuki,M.,etal.2005,ApJ,621,
499
884
Levan,A.,Patel,S.,Kouveliotou,C.,etal.2005,ApJ,622,977
Campana, S., Barthelmy,S., Burrows, D., et al. 2005a,GCN,
Matheson,T.,Garnavich,P.M.,Stanek,K.Z.,etal.2003,ApJ,
3866
599,394
Campana,S.,Mangano,V.,Chincarini,G.,etal.2005b,GCN,
Mirabal,N.,&Halpern,J.P.2006,GCN4792
3872
Mirabal,N.&Halpern,J.P,An,D.,etal.2006,ApJ,643,99
Campana,S.,Mangano,V.,Blustin,A.J.,etal.2006,Nature,
Modjaz,Stanek,K.Z.,Garnavich,P.M.,etal.2006,ApJ,645,
442,1008
21
Castro-Tirado,A.J.,Jelinek,M.,MateoSanguino,T.J.,etal.
Oke,J.B.1990,AJ,99,1621
2004,AstronomischeNachrichten,325,679
Pagel, B. E. J., Edmunds,M. G., Blackwell, D. E., Chun, M.
Cenko,S.B.,Kulkarni,S.R.,Gal-Yam,A.,&Berger,E.2005,
S.,&Smith,G.1979,MNRAS,189,95
GCN3542
Pei,Y.C.1992,ApJ,395,130
Christensen, L., Hjorth, J., & Gorosabel, J. 2004, A&A, 425,
Pian,E.,Mazzali,P.,Masetti,N.,etal.2006,Nature,442,1011
913
Preece,R.D.,Mallozzi,R.S.,Pendleton,G.N.,&PaciesasW.
Crew,G.,Ricker,G.,Atteia,J-L.,etal.2005,GCN,3890
S.2000,ApJS,126,19
Dermer,C.D.,Chiang,J.,&Bo¨ttcher,M.1999,ApJ,513,656
Rau,A.,Salvato,M.,&Greiner,J.2005,A&A,444,425
Deutsch,E.W.1999,AJ,118,1882
Rhoads,J.E.2003,ApJ,591,1097
Dickey,J.M.,&Lockman,F.J.1990,ARA&A,28,215
Sakamoto,T., Lamb,D. Q., Kawai,N., etal. 2005,ApJ, 629,
Fan,Y.Z.,&Wei,D.M.2005,MNRAS,364,L42
311
Fukugita,M.,Shimasaku,K.,&Ichikawa,T.1995,PASP,107,
Schady,P.,Mason,K.O.,Osborne,J.P.,etal.2006,ApJ,643,
945
276
Fynbo,J.,Sollerman,J.,Hjorth,J.,etal.2004,ApJ,609,962
Schaefer,B.E.,Yuang,F.,&Alatalo,K.2005,GCN,3867
Fynbo,J.P.U.,Jensen,B.L.,Sollerman,J.,etal.2005,GCN,
Schlegel,D.J.,Finkbeiner,D.P.,&Davis,M.1998,ApJ,500,
3874
525.
Fynbo, J. P. U., Watson, D., Thoene, C., et al. 2006, Nature,
Soderberg,A.M.,Kulkarni,S.R.,Fox,D.B.,etal.2005,ApJ,
444,1047
627,877
Ghisellini, G., Ghirlanda, G., Mereghetti, S., Bosnjak, Z.,
Soderberg, A. M., Nakar, E., Cenko, S. B., et al. 2006,
Tavecchio,F.,&Firmani,C.2006,MNRAS,372,1699
astro-ph/0607511
Gorosabel,J.,Casanova,V., Garrido,R., Castro-Tirado,A. J.,
Sollerman, J., Kozma, C., Fransson, C., Leibundgut, B.,
Jelinek,M.,&deUgartePostigo,A.2005,GCN,3865
Lundqvist,P.,Ryde,F.,&Woudt,P.2000,ApJ,537,L127
Gorosabel, J., Christensen, L., Hjorth, J., et al. 2003, A&A,
Sollerman,J., O¨stlin, G., Fynbo,J. P. U., Hjorth, J., Fruchter,
400,127
A.,&Pedersen,K.2005,NewAstronomy,11,103
Gorosabel, J., Castro-Tirado, A. J., Ramirez-Ruiz, E., et al.
Sollerman,J.,Jaunsen,A.O.,Fynbo,J.P.U.,etal.2006,A&A,
2006,ApJ,641,L13.
454,503
Granot,J.,Ramirez-Ruiz,E.,&Perna,R.2005,ApJ,630,1003
Tominaga, N., Deng, J., Mazzali, P. A., Maeda, K., Nomoto,
Heise, J., in’tZand,J., Kippen,R. M., & Woods, P. M. 2001,
K., Pian, E., Hjorth, J., & Fynbo, J. P. U. 2004, ApJ, 612,
in the proc. of the conference, Gamma-ray Bursts in the
L105
AfterglowEra,16
Turnshek, D. A., Rao, S. M., Ptak, A. F., Griffiths, R. E., &
Monier,E.M.2003,ApJ,590,730
J.Sollermanetal.:XRF050824 9
Watson,D.,Fynbo,J.P.U.,Ledoux,C.,etal.2006,ApJ,652,
1011
Wiersema, K., Savaglio, S., Vreeswijk, P. M., et al., 2007,
A&A,inpress,astro-ph/0701034
Woosley, S. E., Eastman, R. G., & Schmidt, B. P. 1999,ApJ,
516,788
Woosley,S.E.,&Bloom,J.2006,ARA&A,44,507
Yamazaki,R.,Ioka,K.,&Nakamura,T.2002,ApJ,571,L31
Yamazaki,R.,Ioka,K.,&Nakamura,T.2003,ApJ,593,941
Zeh,A.,Klose,S.,&Hartmann,D.H.2004,ApJ,609,952
Zhang, B., Fan, Y. Z., Dyks, J., Kobayashi, S., Me´sza´ros, P.,
Burrows,D.N.,Nousek,J.A.&Gehrels,N.2006,ApJ,642,
354
10 J.Sollermanetal.:XRF050824
Table2.LogofobservationsandphotometryoftheafterglowofXRF050824.
Date ∆t Magnitude MagnitudeError PassBand Telescope
(UT) (days) (1σ)
Aug25.0973 0.130449 20.72 0.04 B-band NOT
Aug25.1017 0.134850 20.72 0.05 B-band NOT
Aug25.1061 0.139250 20.65 0.04 B-band NOT
Oct6.1943 42.2274 24.43 0.16 B-band VLT
Oct6.1898 42.2229 24.26 0.17 V-band VLT
Aug24.9742 0.007346 18.22 0.35 R-band BOOTES
Aug24.9813 0.014429 19.11 0.32 R-band BOOTES
Aug24.9935 0.0266991 18.94 0.03 R-band OSN
Aug24.9971 0.0302391 19.04 0.04 R-band OSN
Aug25.0007 0.0338001 19.07 0.03 R-band OSN
Aug25.0096 0.042705 19.67 0.33 R-band BOOTES
Aug25.0166 0.0496998 19.31 0.03 R-band OSN
Aug25.0337 0.0668297 19.56 0.05 R-band OSN
Aug25.0372 0.0703697 19.59 0.07 R-band OSN
Aug25.0546 0.0877495 19.80 0.04 R-band NOT
Aug25.0609 0.0940495 19.85 0.05 R-band NOT
Aug25.0653 0.0984497 19.93 0.04 R-band NOT
Aug25.0881 0.121212 19.33 0.20 R-band BOOTES
Aug25.1496 0.182749 20.15 0.04 R-band OSN
Aug25.1599 0.193050 20.21 0.05 R-band OSN
Aug25.1700 0.203150 20.23 0.07 R-band OSN
Aug25.1813 0.214449 20.38 0.08 R-band OSN
Aug25.2003 0.233429 20.42 0.10 R-band MDM
Aug25.2042 0.237391 20.22 0.08 R-band MDM
Aug25.2082 0.241360 20.42 0.10 R-band MDM
Aug25.2122 0.245300 20.34 0.09 R-band MDM
Aug25.2161 0.249279 20.39 0.09 R-band MDM
Aug25.2201 0.253250 20.47 0.11 R-band MDM
Aug25.2241 0.257210 20.51 0.12 R-band MDM
Aug25.2251 0.258249 20.25 0.05 R-band D1.5m
Aug25.2280 0.261179 20.39 0.11 R-band MDM
Aug25.2303 0.263451 20.47 0.06 R-band D1.5m
Aug25.2320 0.265150 20.35 0.11 R-band MDM
Aug25.2360 0.269110 20.24 0.10 R-band MDM
Aug25.2402 0.273399 20.35 0.07 R-band MDM
Aug25.2477 0.280849 20.30 0.07 R-band MDM
Aug25.2551 0.288280 20.49 0.08 R-band MDM
Aug25.2626 0.295719 20.35 0.08 R-band MDM
Aug25.2700 0.303150 20.39 0.07 R-band MDM
Aug25.2783 0.311409 20.62 0.11 R-band MDM
Aug25.2966 0.329741 20.43 0.05 R-band MDM
Aug25.3040 0.337179 20.55 0.08 R-band MDM
Aug25.3062 0.339350 20.64 0.09 R-band D1.5m
Aug25.3111 0.344250 20.69 0.10 R-band D1.5m
Aug25.3115 0.344610 20.51 0.08 R-band MDM
Aug25.3288 0.361910 20.49 0.06 R-band MDM
Aug25.3362 0.369339 20.62 0.07 R-band MDM
Aug25.3436 0.376780 20.55 0.06 R-band MDM
Aug25.3511 0.384220 20.60 0.07 R-band MDM
Aug25.3587 0.391870 20.58 0.06 R-band MDM
Aug25.3632 0.396349 20.55 0.05 R-band VLT
Aug25.3661 0.399300 20.60 0.06 R-band MDM
Aug25.3736 0.406740 20.60 0.06 R-band MDM