Table Of ContentTheMathematicsofVariousEntertainingSubjects
(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)
T M V
HE ATHEMATICS OF ARIOUS
E S
NTERTAINING UBJECTS
Volume 2
RESEARCH IN GAMES, GRAPHS,
COUNTING, AND COMPLEXITY
(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)
EDITEDBY
Jennifer Beineke & Jason Rosenhouse
WITHAFOREWORDBYRONGRAHAM
NationalMuseumofMathematics,NewYork • PrincetonUniversityPress,PrincetonandOxford
Copyright(cid:2)c 2017byPrincetonUniversityPress
PublishedbyPrincetonUniversityPress,41WilliamStreet,
Princeton,NewJersey08540
IntheUnitedKingdom:PrincetonUniversityPress,6OxfordStreet,
Woodstock,OxfordshireOX201TR
press.princeton.edu
InassociationwiththeNationalMuseumofMathematics,
11East26thStreet,NewYork,NewYork10010
Jacketart:Toprow(lefttoright)Fig.1:CourtesyofEricDemaineand
WilliamS.Moses.Fig.2:CourtesyofAvivAdler,ErikDemaine,AdamHesterberg,
QuanquanLiu,andMikhailRudoy.Fig.3:CourtesyofPeterWinkler.
Middlerow(lefttoright)Fig.1:CourtesyofErikD.Demaine,MartinL.Demaine,
AdamHesterberg,QuanquanLiu,RonTaylor,andRyuheiUehara.Fig.2:Courtesyof
RobertBosch,RobertFathauer,andHenrySegerman.Fig.3:Courtesyof
JasonRosenhouse.Bottomrow(lefttoright)Fig.1:CourtesyofNoamElkies.
Fig.2:CourtesyofRichardK.Guy.Fig.3:CourtesyofJillBigleyDunham
andGwynWhieldon.
Excerptfrom“Macavity:TheMysterCat”fromOldPossum’sBookofCats
byT.S.Eliot.Copyright1939byT.S.Eliot.Copyright(cid:2)c Renewed1967by
EsmeValerieEliot.ReprintedbypermissionofHoughtonMifflinHarcourt
PublishingCompanyandFaber&FaberLtd.Allrightsreserved.
AllRightsReserved
LibraryofCongressCataloging-in-PublicationData
Names:Beineke,JenniferElaine,1969–editor.|Rosenhouse,Jason,editor.
Title:Themathematicsofvariousentertainingsubjects:researchingames,graphs,
counting,andcomplexity/editedbyJenniferBeineke&JasonRosenhouse;with
aforewordbyRonGraham.Description:Princeton:PrincetonUniversityPress;
NewYork:PublishedinassociationwiththeNationalMuseumofMathematics,
[2017]|Copyright2017byPrincetonUniversityPress.|Includesbibliographical
referencesandindex.
Identifiers:LCCN2017003240|ISBN9780691171920(hardcover:alk.paper)
Subjects:LCSH:Mathematicalrecreations-Research.
Classification:LCCQA95.M368742017|DDC793.74–dc23LCrecord
availableathttps://lccn.loc.gov/2017003240
BritishLibraryCataloging-in-PublicationDataisavailable
ThisbookhasbeencomposedinMinionPro
Printedonacid-freepaper.∞
TypesetbyNovaTechsetPrivateLimited,Bangalore,India
PrintedintheUnitedStatesofAmerica
13579108642
Contents
(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2) (cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)
ForewordbyRonGraham vii
PrefaceandAcknowledgments xi
PARTIPUZZLESANDBRAINTEASERS
1
TheCyclicPrisoners 3
PeterWinkler
2
DragonsandKasha 11
TanyaKhovanova
3
TheHistoryandFutureofLogicPuzzles 23
JasonRosenhouse
4
TheTowerofHanoiforHumans 52
PaulK.Stockmeyer
5
Frenicle’s880MagicSquares 71
JohnConway,SimonNorton,andAlexRyba
PARTIIGEOMETRYANDTOPOLOGY
6
ATriangleHasEightVerticesButOnlyOneCenter 85
RichardK.Guy
7
EnumerationofSolutionstoGardner’sPaperCutting
andFoldingProblem 108
JillBigleyDunhamandGwynethR.Whieldon
8
TheColorCubesPuzzlewithTwoandThreeColors 125
EthanBerkove,DavidCervantes-Nava,DanielCondon,
AndrewEickemeyer,RachelKatz,andMichaelJ.Schulman
9
TangledTangles 141
ErikD.Demaine,MartinL.Demaine,AdamHesterberg,
QuanauanLiu,RonTaylor,andRyuheiUehara
vi • Contents
PARTIIIGRAPHTHEORY
10
MakingWalksCount:FromSilentCirclesto
HamiltonianCycles 157
MaxA.AlekseyevandGérardP.Michon
11
Duels,Truels,Gruels,andSurvivaloftheUnfittest 169
DominicLanphier
12
Trees,Trees,SoManyTrees 195
AllenJ.Schwenk
13
CrossingNumbersofCompleteGraphs 218
NoamD.Elkies
PARTIVGAMESOFCHANCE
14
NumericallyBalancedDice 253
RobertBosch,RobertFathauer,andHenrySegerman
15
ATROUBLE-someSimulation 269
GeoffreyD.Dietz
16
ASequenceGameonaRouletteWheel 286
RobertW.Vallin
PARTVCOMPUTATIONALCOMPLEXITY
17
MultinationalWarIsHard 301
JonathanWeed
18
ClickomaniaIsHard,EvenwithTwoColorsandColumns 325
AvivAdler,ErikD.Demaine,AdamHesterberg,QuanquanLiu,
andMikhailRudoy
19
ComputationalComplexityofArrangingMusic 364
ErikD.DemaineandWilliamS.Moses
AbouttheEditors 379
AbouttheContributors 381
Index 387
Foreword
(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2) (cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)
RonGraham
recreation—somethingpeopledoto
relaxorhavefun.
—Merriam–WebsterDictionary
One of the strongest human instincts is the overwhelming urge to “solve
puzzles.”Whetherthismeanshowtomakefire,avoidbeingeatenbywolves,
keepdryintherain,orpredictsolareclipses,these“puzzles”havebeenwith
ussincebeforecivilization.Ofcourse,peoplewhowerebetteratsuccessfully
dealing with such problems had a better chance of surviving, and then,
as a consequence, so did their descendants. (A current (fictional) solver of
problems like this is the character played by Matt Damon in the recent film
TheMartian).
On a more theoretical level, mathematical puzzles have been around for
thousandsofyears.ThePalimpsest ofArchimedescontainsseveralpagesde-
votedtotheso-calledStomachion,ageometricalpuzzleconsistingoffourteen
polygonalpieceswhicharetobearrangedintoa12×12square.Itisbelieved
that the problem given was to enumerate the number of different ways this
couldbedone,butsinceanumberofthepagesofthePalimpsestaremissing,
wearenotquitesure.
Itiswidelyacknowledgedbynowthatmanyrecreationalpuzzleshaveled
toquitedeepmathematicaldevelopmentsasresearchersdelvedmoredeeply
intosomeoftheseproblems.Forexample,theexistenceofPythagoreantriples,
suchas
32+42 =52,
andquarticquadruples,suchas
26824404+153656394+187967604 =206156734,
ledtoquestions,suchaswhether
xn+yn =zn
couldeverholdforpositiveintegersx,y,andzwhenn≥3.(Theanswer:No!
ThiswasAndrewWiles’resolutionofFermat’sLastTheorem,whichspurred
thedevelopmentofevenmorepowerfultoolsforattackingevenmoredifficult
viii • Foreword
TABLE1.
Numbersexpressibleintheformn=6xy±x±y
x y 6xy+x+y 6xy+x−y 6xy−x+y 6xy−x−y
1 1 8 6 6 4
2 1 15 13 11 9
2 2 28 24 24 20
3 1 22 20 16 14
3 2 41 37 35 31
3 3 60 54 54 48
4 1 29 27 21 19
. . . . . .
. . . . . .
. . . . . .
questions.)Similarstoriescouldbetoldinavarietyofotherareas,suchasthe
analysisofgamesofchanceintheMiddleAgesleadingtothedevelopmentof
probabilitytheory,andthestudyofknotsleadingtofundamentalworkonvon
Neumannalgebras.
In 1900, at the International Congress of Mathematicians in Paris, the
legendarymathematicianDavidHilbertgavehiscelebratedlistoftwenty-three
problemswhichhefeltwouldkeepthemathematiciansbusyfortheremainder
of the century. He was right! Many of these problems are still unsolved.
(Actually, he only mentioned eight of the problems during his talk. The full
listoftwenty-threewasonlypublishedlater.)Inthatconnection,Hilbertalso
wroteabouttheroleofproblemsinmathematics.Paraphrasing,he saidthat
problemsarethecoreofanymathematicaldiscipline.Itiswithproblemsthat
youcan“testthetemperofyoursteel.”However,itisoftendifficulttojudge
thedifficulty(orimportance)ofaparticularprobleminadvance.Letmegive
twoofmyfavoriteexamples.
Problem1. Considerthesetofpositiveintegersnwhichcanberepresentedas
n=6xy±x±y,
wherex ≥ y ≥0.SomesuchnumbersaredisplayedinTable1.
Itseemslikemostofthesmallnumbersoccurinthetable,althoughsomeare
missing.Thelistofthemissingnumbersbegins
{1,2,3,5,7,10,12,17,18,23,...}.
Arethereinfinitelymanynumbersmthatarenotinthetable?
Iwillgivetheanswerattheend.Hereisanotherproblem.
Foreword • ix
Problem 2. A well-studied function in number theory is the divisor function
d(n),whichdenotesthesumofthedivisorsoftheintegern.Forexample,
d(12)=1+2+3+4+6+12=28,
and
d(100)=1+2+4+5+10+20+25+50+100=217.
Anothercommonfunctioninmathematicsistheharmonicnumber H(n).Itis
definedby
(cid:2)n
1
H(n)= .
k
k=1
In other words, H(n) is the sum of the reciprocals of the first n integers. Is it
truethat
d(n)≤ H(n)+eH(n)logH(n),
forn≥1?
Howhardcouldthisbe?Actually,prettyhard(orsoitseems!).
Readers of this volume will find an amazing assortment of brainteasers,
challenges,problems,and“puzzles”arisinginavarietyofmathematical(and
non-mathematical)domains.Andwhoknowswhethersomeoftheseproblems
willbetheacornsfromwhichmightymathematicaloakswillsomedayemerge!
Asfortheproblems,theanswertoeachisthatnooneknows!
ForProblem1,eachnumbermthatismissingfromthetablecorrespondsto
apairoftwinprimes6m−1,6m+1.Furthermore,everypairoftwinprimes
(except 3 and 5) occur this way. Recall, a pair of twin primes is a set of two
primenumberswhichdifferbytwo.Thus,Problem1isreallyaskingwhether
there are infinitely many pairs of twin primes. As Paul Erdo˝s liked to say,
“Everyright-thinkingpersonknowstheanswerisyes,”butsofarnoonehas
been able to prove this. It is known that there exist infinitely many pairs of
primeswhichdifferbyatmost246,theestablishmentofwhichwasactuallya
majorachievementinitself!
ForProblem2,itisknownthattheanswerisyesifandonlyiftheRiemann
Hypothesis holds! As I said, this appears to be a rather difficult problem
at present (to say the least). It appears on the list of the Clay Millennium
Problems,witharewardonofferofonemilliondollars.Goodluck!
Description:The history of mathematics is filled with major breakthroughs resulting from solutions to recreational problems. Problems of interest to gamblers led to the modern theory of probability, for example, and surreal numbers were inspired by the game of Go. Yet even with such groundbreaking findings and