Table Of ContentA member of Penguin Group (USA) Inc.
A member of Penguin Group (USA) Inc.
ALPHA BOOKS
Published by the Penguin Group
Penguin Group (USA) Inc., 375 Hudson Street, New York, New York 10014, USA
Penguin Group (Canada), 90 Eglinton Avenue East, Suite 700, Toronto, Ontario M4P 2Y3,
Canada (a division of Pearson Penguin Canada Inc.)
Penguin Books Ltd., 80 Strand, London WC2R 0RL, England
Penguin Ireland, 25 St. Stephen’s Green, Dublin 2, Ireland (a division of Penguin Books Ltd.)
Penguin Group (Australia), 250 Camberwell Road, Camberwell, Victoria 3124, Australia (a
division of Pearson Australia Group Pty. Ltd.)
Penguin Books India Pvt. Ltd., 11 Community Centre, Panchsheel Park, New Delhi—110 017,
India
Penguin Group (NZ), 67 Apollo Drive, Rosedale, North Shore, Auckland 1311, New Zealand
(a division of Pearson New Zealand Ltd.)
Penguin Books (South Africa) (Pty.) Ltd., 24 Sturdee Avenue, Rosebank, Johannesburg 2196,
South Africa
Penguin Books Ltd., Registered Offices: 80 Strand, London WC2R 0RL, England
Copyright © 2009 by W. Michael Kelley
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of information
contained herein. For information, address Alpha Books, 800 East 96th Street, Indianapolis,
IN 46240.
ISBN: 1-101-15010-6
Library of Congress Catalog Card Number: 2006926601
Note: This publication contains the opinions and ideas of its author. It is intended to
provide helpful and informative material on the subject matter covered. It is sold with the
understanding that the author and publisher are not engaged in rendering professional
services in the book. If the reader requires personal assistance or advice, a competent
professional should be consulted.
The author and publisher specifically disclaim any responsibility for any liability, loss, or risk,
personal or otherwise, which is incurred as a consequence, directly or indirectly, of the use
and application of any of the contents of this book.
Contents
Introduction
Chapter 1: Displaying Descriptive Statistics HjbbVg^o^c\YViV^ciVWaZh!X]Vgih!VcY\gVe]h 1
Frequency Distributions .......H..]..d.l..^.c..\..n..d.j..g..Y..V...i.V...^.c..V...i..V..W..aZ................................................ 2
Histograms ......H..].d..l..^.c.\...n.d..j..g..[..g.Z.f..j..Z..c.X..n...Y..^.h.i.g..^W..j..i..^d..c..^.c..V....X.]..V..g..i....................................... 5
Bar Charts .........................H..]..d.l...^c..\..n..d.j..g..X..V..i..Z..\.d..g.^X..V..a..Y..V..i..V...^.c..V...X..]..V..g.i............................ 8
Pie Charts ........H..].d..l..^.c.\...n.d..j..g..X..V..i.Z..\..d.g.^.X..V..a.Y...V..i.V...^.c..V...X..^.g.X..a.Z............................................. 14
Line Charts ........................H..]..d.l..^.c.\...n..d.j..g..Y..V..i..V...d.k..Z.g...i.^.b..Z...^.c..V...X..]..V..g.i............................. 19
Scatter Charts ......H..]..d.l...^c..\..g..Z.a.V..i..^d..c.h..]..^e..h..W.Z..i..l..Z..Z..c..i..l..d..k..V..g.^.V..W..aZ..h..^.c..V....X.]..V..g..i.Y..................... 21
Chapter 2: Calculating Descriptive Statistics: Measures ;o^fc YC^ce\ntir]aZl XTZendency V i 25
Mean ...............................................I..]..Z...V..k.Z..g.V..\..Z..................................................... 26
Median ...............................G..^.\..].i...h.b..V...X.`...^.c..i..].Z...b...^Y...Y..aZ............................................... 30
Midrange ........................=..V..a[..l..V..n...W.Z..i..l..Z..Z..c..i..].Z...Z..c.Y...e.d.^.c..i.h........................................... 32
Mode ...................;..^.c.Y..^.c..\..i..].Z...b...d.h.i...[.g.Z..f..j..Z..c.i..k..V..a.j..Z..................................................... 33
Percentile ...................................D..c..V...h..X.V...aZ...[..g.d.b....&..i..d..&..%.%............................................ 36
Weighted Mean ...................................6..k..Z.g..V..\.^.c..\..j..h.^.c.\...Y..^.[.[..Z..g.Z..c.i...l..Z..^\..]..i.h...................... 42
Mean of a Frequency Distribution ...............6..k..Z..g.V..\.^.c..\..Y..^.h.X..g.Z..i..Z..Y...V..i.V.............................. 45
ChapMteera 3n: oCf al cGurloautpinedg FDreqsucernipcyt iDvies tSritbautitisotnic s..:. .M..Z8.e.V.ai.as.X.uZ.j.r.agV.e.is.. ^c.co.\.f. .iV.].ia.Z].r.Z.ib.a.YZt..iV^.ho.cg.n.d. .[..\..g.d..j..e.Z..YZ..Y.Y.V.V.i.i.V...... 4571
Range ...........................................=..d.l...l..^.Y..Z...^.h..n..d.j..g..Y..V..i..V..4......................................... 52
Interquartile Range ..........;..^c..Y..^.c.\...i.]..Z...b..^.Y..Y..a.Z...*..%..e.Z..g.X..Z..c..i..d.[...i.]..Z...Y..V..i..V............................ 54
Outliers ....................................H..Z..e.V..g..V..i.^.c.\...i.]..Z...\..d.d.Y....Y..V..i.V...[..g.d..b...i.]..Z...W..V..Y..................... 58
Visualizing Distributions .....7..d..m.".V..c..Y..".l..]..^h.`..Z..g..e.a.d..i.h..V..c..Y...Y..^.h.i..g.^.W.j..i..^d..c..Y...^V..\..g.V..b...h................. 62
Stem-and-Leaf Plot ...................................I..].Z.I..b]..Zd..h.Ói..dX.l.d.b.Z.g.bd..ed.dc.l..lZ..Vg..nd.h.[.i.Y.d..Vb..iZ.V.V..h.j..g.Z...Y..^.h.e.Z..g.h.^.d.c.... 66
V
Variance and Standard Deviation ofof ra G PrXopuupleiad^t iDoYna^h te.a. ....d......[...g...........Z..c.X..n....Y..................... 871
Chebyshev’s Theorem ..................E..j..i.i..^c..\..i..]..Z..h..i.V..c..Y..V..g.Y...Y..Z..k..^.V..i.^.d.c...i.d...l..d.g.`....................... 85
I]Z=jbdc\djh7dd`d[6a\ZWgVEgdWaZbh
iii
i
c [
d
9
g ^
8 h
Z c
d
[Z]
h
h
d
^
ciZ g
V
b^ ^c\ eZ
i
]
a c\
Vj Va [ gZfj ^hig^Wji^dch
Table of Contents
Chapter 4: Introduction to Probability L]ViVgZi]ZX]VcXZh4 89
HiVgi^c\l^i]i]ZWVh^Xh
Types of Probability .................................................................................................. 90
8dbW^c^c\egdWVW^a^i^Zhjh^c\ÆdgÇ
Addition Rules for Probability .................................................................................... 98
Conditional Probability ..............E..g.d.W..V..W..^.a^.i..^Z..h..i..]..V..i..Y..Z..e.Z..c..Y...d.c...d.i..]..Z.g...Z.k..Z..c.i..h...................106
The Multiplication Rule for Probability .I..l..d..d..g..b..d..g.Z...Z.k..Z..c.i..h..d.X..X..j..g.g.^.c..\..V..i...i.]..Z...h.V..b..Z...i..^b...Z...116
6cdi]ZglVnidXVaXjaViZXdcY^i^dcVaegdWVW^a^i^Zh
Bayes’ Theorem .......................................................................................................120
Chapter 5: Counting Principles and Probability Distributions DYYhndjXVcXdjcidc 123
=dlegdWVWaZ^h^ii]ViildhZeVgViZZkZcihdXXjg4
Fundamental Counting Principle ..............................................................................124
=dlbVcnlVnhXVcndjVggVc\ZVXdaaZXi^dcd[i]^c\h4
Permutations ..........................................................................................................127
L]Zci]ZdgYZgd[dW_ZXih^hcdi^bedgiVci
Combinations .........................................................................................................129
EgdWVW^a^injh^c\Y^hXgZiZYViV
Probability Distributions ..........................................................................................135
Chapter 6: Discrete Probability Distributions 7^cdb^Va!Ed^hhdc!VcY]neZg\ZdbZig^X 141
Jh^c\XdZ[ÒX^Zcihi]ViVgZXdbW^cgVi^dch
Binomial Probability Distribution ..............................................................................142
Poisson Probability Distribution .......9..Z.i..Z..g.b..^.c..^c..\..e..g.d.W..V..W..^.a.^i..^.Z.h..d.d.ik.Z..g..h..e.Z..X..^Ò..X...^.c.i..Z.d.g.k.V..a.h........149
g e W l 6W cY h]
The Poisson Distribution as an Approxim^ ationh to] the Binomial Distribution ...................156
Z a Z YZ
Hypergeometric Probability Distributicon ........^g^..V...........c........Z.....V.................e..Z.......Z.c.........159
V l]
G k i d a
Chapter 7: Continuous Probability DistributiYons V g Éc Z 165
7ZaaXjgkZhVcYo"hXdgZh
Normal Pobability Distribution .................................................................................166
W
DcZ!ild!VcYi6]gZZhiVcYVgYYZk^Vi^dch[gdbiX]ZbZVc
The Empirical Rule ...................................c.........................................d.....................179
d i
]Zg
W egdWV
gi
Using the Normal Distribution to Approximate the Binomial Distribution .......................182
<d^c\[gdbVWZaa"h]VeZYidVWdm"h]VeZYY^hig^Wji^dc
Continuous Uniform Distribution .............................................................................186
Exponential Distribution ..........A.^.`..Z..i..]..Z..E..d.^.h.h.d..c..Y...^h.i..g.^.W..j..i.^.d.c..!.W..j..i..X..d..c.i..^c..j..d.j..h....................189
Chapter 8: Sampling and Sampling Distributions Ldg`^c\l^i]VhjWhZid[VedejaVi^dc 195
HdbVcnlVnhid\Vi]ZgVhVbeaZ
Probability Sampling ........................................................................a.......................196
S
Fainmitpel iPnogp uDliastrioibnu Ctiornr eocft itohne MFaVHecgZatboYnr ..c.\...Y.E.g.Z..Y..g^.X^.W.i.j^.ci.\.^.d.ci.].d[.Z...W.Z.Z.[.].V...k.^.d.g.l.^id.Z.i].[.g.h..V.V.bh.Y.be.a.dZ.V..b.k.Z..eV.d.c..h......d......210957
E
^\ ZWZ]V^kd c
gV h
Sampling Distribution of the Proportion .....................................................................207
EgZY^Xi^c\egdedgi^dch[gdbVhbVaaedejaVi^dc
Finite Population Correction Factor for the Sampling Distribution of the Proportion ..........215
iv
d
Xj
i i
g
c c W
Z
9 V
]V
a
h
V W i ni
^
h]
i
^c
a
a
Xie
^
d
^
a
W
i
i
i
i
^
i
V
a
c^ bV^ a
Z b ^
^ i ^Z Z kZcih g c ^c
\
db Z
c jbW
h
Zg
^cdb^Va
j
^hi c
b ZV ^ c
i]
] Y
^hXgZ b V
e
g
d ja
Z
I]Z=jbdc\djh7dd`d[6a\ZWgVEgdWaZbh
Table of Contents
Chapter 9: Confidence Intervals Ejii^c\hVbeaZhidldg` 219
=dljcgZegZhZciVi^kZXdjaYVhVbeaZWZ4
Introduction to Confidence Intervals for the Mean .......................................................220
8ZcigVaa^b^ii]ZdgZbidi]ZgZhXjZ
Confidence Intervals for the Mean with Large Samples and Sigma Known ......................221
A^[Zl^i]djii]ZXZcigVaa^b^ii]ZdgZb
Confidence Intervals for the Mean with Small Samples and Sigma Known ......................225
>cigdYjX^c\i]ZHijYZciÉhi"Y^hig^Wji^dc
Confidence Intervals for the Mean with Small Samples and Sigma Unknown ..................229
LZaXdbZWVX`!XZcigVaa^b^ii]ZdgZb
Confidence Intervals for the Mean with Large Samples and Sigma Unknown ..................235
Confidence Intervals for the Proportion .....:..h.i..^.b..V..i.^.c..\..e..Z.g..X.Z..c..i.V..\..Z..h..[.g.d..b...V...e..d.e.j..a.V..i.^.d..c.......239
I^bZidgZ_ZXihdbZcjaa]nedi]ZhZh
Chapter 10: Hypothesis Testing for a Single Population 243
Introduction to Hypothesis Testing for the Mean L..]..V..i.V.V..g.Za..c..j..aa..V..c].Y...V..a.i.Z..g.c.V..i..^Zk..Z..]..n.e.d..i.]..Z.h..Z.h.4...244
8Vaa^c\dc i XZci ^ V
Hypothesis Testing for the Mean with n v
I 3]Z0n acnZdZ SYigma WKZngcown Y..h....hZ.g^i..........i........\..........247
Hypothesis Testing for the Mean with n < 30 and Sigma Known^ ...................j..^..............255
7g^c\^c\W Vi ]Z d
W
Hypothesis Testing for the Mean with n < 30 and Sigma Unknown l...............................259
A^`Zi]Za V ZXi ^c ]
Hypothesis Testing for the Mean with n > 30 and Sigma Unknown ...............................265
IZhi^c\eZgXZciV\Zh^chiZVYd[bZVch
Hypothesis Testing for the Proportion .........................................................................271
Chapter 11: Hypothesis Testing for Two Population8s ddbeVg^c\b=inledie]dZejh^aoV^ci\^dcbZVch 279
i
^
Hypothesis Testing for Two Means with n > 30 and SigmYa Known .......Y.........................280
L]ZcedejVa i
Hypothesis Testing for Two Means with n < 30 and Sigma Known ......................j..iZ........286
Cdh^\bV hbVaahVbeaZh2i"Y^hig^Wji^dc
Hypothesis Testing for Two Means with n < 30 and Sigma Unknown ............................289
Oh^chiZVYd[Ih
Hypothesis Testing for Two Means with n v 30 and Sigma Unknown ............................299
L]Vi]VeeZchl]Zci]ZildhVbeaZhVgZgZaViZY4
Hypothesis Testing for Two Means with Dependent Samples ..........................................302
8dbeVg^c\edejaVi^dceZgXZciV\Zh
Hypothesis Testing for Two Proportions ......................................................................309
Chapter 12: Chi-Square and Variance Tests IZhi^c\XViZ\dg^XVaYViV[dgkVg^Vi^dc 317
>hi]ZYViVY^hig^WjiZYi]ZlVnndji]dj\]i^ildjaYWZ4
Chi-Square Goodness-of-Fit Test .................................................................................318
Chi-Square Test for Independence ................6..g.Z...i..].Z...k..V..g.^.V..W..aZ..h..g..Z.a.V..i..Z.Y...4........................331
IZhi^c\kVg^Vi^dc^chiZVYd[i]ZbZVc
Hypothesis Test for a Single Population Variance .........................................................338
>cigdYjX^c\i]Z;"Y^hig^Wji^dc
Hypothesis Test for Two Population Variances .............................................................346
Chapter 13: Analysis of Variance 8dbeVg^c\bjai^eaZbZVchl^i]i]Z;"Y^hig^Wji^dc 351
I]ZbdhiWVh^X6CDK6egdXZYjgZ
One-Way ANOVA: Completely Randomized Design ......................................................352
6YY^c\VWadX`^c\kVg^VWaZidi]ZiZhi
One-Way ANOVA: Randomized Block Design .............................................................371
I]Z=jbdc\djh7dd`d[6a\ZWgVEgdWaZbh
v
^
a
i
V
b b i
a a
i
W
j Y
i
!
d
^
c W
Z g
W i
g
^
^
n
h
] Z
g d Zg
b X V^c
id
d g ^jW idc
X `i " ZY
i c
h
ih
d o X
"h d
h
gZ
Z
^
d Z Vaa n
c
c
Y
WZ
Table of Contents
h
dc d
^ h e Vg
;^cY^c\gZaVi ^ ^
Chapter 14: Correlation and Simple Regression Analysis k 389
9ZhXg^W^c\i]ZhigZc\i]VcYY^gZXi^dcd[VgZaVi^dch]^e
Correlation ............................................................................................................390
A^cZd[WZhiÒi
Simple Regression Analysis .......................................................................................396
IZhihi]ViYdcdigZfj^gZVhhjbei^dchVWdjii]ZedejaVi^dch
Chapter 15: Nonparametric Tests 413
IZhii]ZbZY^Vcd[VhVbeaZ
The Sign Test with a Small Sample Size ......................................................................414
IZhibZY^Vchjh^c\o"hXdgZh
The Sign Test with a Large Sampcle Size ......................................................................418
i ^ e
6eeani]Zh^\ciZhiidildYZeZcYZciYViVhZih
T
The Paired-Sample Sign T]esZt8 d(InbWf#^ 25) ...j.^..id...Y.^.[....c.[.Y..............Z..hW..Z.d..i........g.........b.....hi............4213
[ Z cZX l Z il
The Wilcoxon Rank Sum Test for Small Samples .........................................................425
JhZo"hXdgZhidbZVhjgZgVc`Y^[[ZgZcXZh
The Wilcoxon Rank Sum Test for Large Samples .........................................................428
9^[[ZgZcXZ^cbV\c^ijYZWZilZZcYZeZcYZcihVbeaZh
The Wilcoxon Signed-Rank Test ................................................................................431
8dbeVg^c\bdgZi]VcildedejaVi^dch
The Kruskal-Wallis Test ................8.d..g.g.Z..aV..i..^c..\..Y..V..i.V...h.Z..i.h..V..X..X..d.g.Y..^.c.\..i..d..g.V..c.`...Y..^[..[.Z..g.Z..c.X..Z.h.......436
The Spearman Rank Correlation Coefficient Test .........................................................442
Chapter 16: Forecasting EgZY^Xi^c\[jijgZkVajZhd[gVcYdbkVg^VWaZh 449
I]ZbdhiWVh^X[dgZXVhi^c\iZX]c^fjZ
Simple Moving Average ...........................................................................................450
GZXZciYViV^hlZ^\]iZYbdgZ]ZVk^an
Weighted Moving Average ........................................................................................454
6hZa["XdggZXi^c\[dgZXVhi^c\iZX]c^fjZ
Exponential Smoothing ............................................................................................458
6YYigZcYhidi]ZhZa["XdggZXi^c\bZi]dY
Exponential Smoothing with Trend Adjustment ...........................................................462
6XXdjci[dgigZcYhVcYhZVhdcVa^cÓjZcXZh
Trend Projection and Seasonality ..............................................................................468
I]Z^cYZeZcYZcikVg^VWaZYdZhcÉi]VkZidWZi^bZ
Causal Forecasting ..................................................................................................477
Z Vhj g
Chapter 17: Statistical Process Cmontrol J^ h^c\hciVinie^hZi^XhidbZVhjgZZfjVa^Zin 483
e ^c i] i h d[
bZci
Introduction to Statistical Process Control ...................................................................484
BZVcVcYgVc\ZXdcigdaX]Vgih
Statistical Process Control for Variable Measurement ....................................................484
8VaXjaViZi]Zegdedgi^dcd[YZ[ZXi^kZ^iZbh
Statistical Process Control for Attribute Measurement Using p-charts ..............................491
8djci^c\i]ZcjbWZgd[YZ[ZXi^kZ^iZbh
Statistical Process Control for Attribute Measurement Using c-charts ..............................495
>hVegdXZhhXVeVWaZd[eZg[dgb^c\VXXdgY^c\idYZh^\c4
Process Capability Ratio ...........................................................................................498
BZVhjg^c\XVeVW^a^in[dgVegdXZhhi]Vi]Vhh]^[iZY
Process Capability Index ..........................................................................................500
vi
ZZ
l
c
i l
i
V i e
i i
h V
Z Z
h
Z
Y
g
:
Z
[
[
Y
i
V Z
hV
Y
V
]
V Z
Wa
h
]Zh^
o
g Y
c
c " d h V
\ gZ X i Zc Z
a
b h
Z
\
d
adg Z f
jVa^inb
\
I]Z=jbdc\djh7dd`d[6a\ZWgVEgdWaZbh
Table of Contents
Chapter 18: Contextualizing Statistical Concepts ;^\jg^c\djil]ZcidjhZl]Vi[dgbjaV 503
GZ[ZgZcXZIVWaZh *(&
6eeZcY^m6/8g^i^XVaKVajZhVcY8dcÒYZcXZ>ciZgkVah *)&
6eeZcY^m7/=nedi]Zh^hIZhi^c\ *)'
6eeZcY^m8/GZ\gZhh^dcVcY6CDK6:fjVi^dch *))
Index 545
I]Z=jbdc\djh7dd`d[6a\ZWgVEgdWaZbh
vii
>cigdYjXi^dc
6gZndj^cVhiVi^hi^XhXaVhh4NZh4I]ZcndjcZZYi]^hWdd`#=ZgZÉhl]n/
;VXi&/I]ZWZhilVnidaZVgchiVi^hi^Xh^hWnldg`^c\djihiVi^hi^XhegdWaZbh#I]ZgZÉh
cdYZcn^c\^i#>[ndjXdjaYÒ\jgZi]^hXaVhhdji_jhiWngZVY^c\i]ZiZmiWdd`dgiV`^c\
\ddYcdiZh^cXaVhh!ZkZgnWdYnldjaYeVhhl^i]Ón^c\Xdadgh#Jc[dgijcViZan!i]Z]Vgh]
igji]^hi]Vindj]VkZidWjX`aZYdlcVcYldg`egdWaZbhdjijci^andjgÒc\ZghVgZ
cjbW#
;VXi'/BdhiiZmiWdd`hdcaniZaandjl]Vii]ZVchlZghidi]Z^gegVXi^XZegdWaZbhVgZ
Wjicdi]dlidYdi]ZbHjgZndjgiZmiWdd`bVn]VkZ&,*egdWaZbh[dgZkZgnide^X!
Wjibdhid[i]Zbdcan\^kZndji]ZVchlZgh#I]VibZVch^[ndjYdcÉi\Zii]ZVchlZg
g^\]indjÉgZidiVaanhXgZlZY@cdl^c\ndjÉgZlgdc\^hcd]ZaeViVaa^[ndjYdcÉi`cdlL=N
ndjÉgZlgdc\#HiVi^hi^XhiZmiWdd`hh^idcV]j\Zi]gdcZ!a^`Zi]Z<gZViVcYIZgg^WaZ
DoVcYhVn!ÆCdeZ!ignV\V^c!ÇVcYndjYd#DkZgVcYdkZg!jhjVaan\Zii^c\i]ZegdWaZb
lgdc\#L]ViVYZa^\]i[jalVnidaZVgcAZiÉhcdiZkZc\Zi^cidl]ni]ZndcaniZaandj
i]ZVchlZghidi]ZdYYegdWaZbh#9dZhi]VibZVci]ZWdd`ÉhVXijVaVji]dgY^YcÉi
ZkZc[ZZaa^`Zldg`^c\djii]ZZkZcdcZh4
;VXi(/:kZcl]ZcbVi]Wdd`hignidh]dlndji]ZhiZeh[dgVegdWaZb!i]ZnYdV
adjhn_dW#BVi]eZdeaZadkZidh`^ehiZeh#NdjÉaaWZ[daadl^c\Vadc\ÒcZl^i]VcZmeaVcVi^dc
VcYi]ZcVaad[VhjYYZcWVb!ndjÉgZadhi#NdjÉaai]^c`idndjghZa[!Æ=dlY^Yi]ZnYd
i]Vi4ÇdgÆL]ZgZi]Z]ZX`Y^Yi]Vi)'XdbZ[gdb4>ilVhcÉii]ZgZ^ci]ZaVhihiZeÇ
L]nYdVabdhiVaad[i]ZhZWdd`hVhhjbZi]Vi^cdgYZgidldg`djiVegdWaZbdceV\Z
6aad[djg '%%!ndjÉYWZiiZg`cdleV\Zh&i]gdj\]&..a^`Zi]ZWVX`d[ndjg]VcY4NdjYdcÉilVci
cdiZhVgZd[[ idheZcYi]ZgZhid[ndjga^[Zdc]dbZldg`Ndj_jhilVciid`cdll]nndj`ZZe\Zii^c\
i
id]^ih]VZcYh^YeZd^ca^i`Z VcZ\Vi^kZcjbWZgl]ZcndjÉgZign^c\idXVaXjaViZi]ZegdWVW^a^ind[YgVl^c\V[jaa
idi]ZeVgihd[ ]djhZ[gdbVYZX`d[XVgYh!l]^X]ndjl^aaaZVgc^c8]VeiZg*#
i]ZWdd`lZÉgZ
ign^c\id ;VXi)/GZVY^c\a^hihd[[VXih^h[jc[dgVl]^aZ!Wjii]Zc^i\ZihdaY#AZiÉhXjiid
ZmeaV^c# i]ZX]VhZ#?jhiVWdjiZkZgnh^c\aZ`^cYd[hiVi^hi^XhegdWaZbndjXdjaYedhh^Wangjc
^cid^h^c]ZgZÅV[iZgVaa!i]^hWdd`^h]jbdc\djh>[Vi]djhVcYegdWaZbhVgZcÉiZcdj\]!
i]ZcndjÉkZ\dihdbZ`^cYd[XgVonhiVih]jc\Zg!bn[g^ZcY!VcY>ÉYhZZ`egd[Zhh^dcVa
]Zae#I]^hegVXi^XZWdd`lVh\ddYViÒghi!WjiidbV`Z^i\gZVi!lZlZcii]gdj\]VcY
ldg`ZYdjiVaai]ZegdWaZbhVcYidd`cdiZh^ci]ZbVg\^chl]ZclZi]dj\]ihdbZi]^c\
lVhXdc[jh^c\dgcZZYZYVa^iiaZbdgZZmeaVcVi^dc#LZVahdYgZla^iiaZh`jaahcZmiid
i]Z]VgYZhiegdWaZbh!hdndjÉY`cdlcdiid[gZV`dji^[i]ZnlZgZiddX]VaaZc\^c\#
6[iZgVaa!^[ndjÉgZldg`^c\dcVegdWaZbVcYndjÉgZidiVaanhijbeZY!^hcÉi^iWZiiZgid
`cdli]Vii]ZegdWaZb^hhjeedhZYidWZ]VgY4>iÉhgZVhhjg^c\!ViaZVhi[dgjh#
viii
I]Z=jbdc\djh7dd`d[6a\ZWgVEgdWaZbh