Table Of Contentcatalysts
ArAtirctliecle
Synthesis and Application of Novel Ruthenium
Synthesis and Application of Novel Ruthenium
Catalysts for High Temperature Alkene Metathesis
Catalysts for High Temperature Alkene Metathesis
TegeneT.Tole,JeanI.duToit,CorneliaG.C.E.vanSittert,JohanH.L.Jordaanand
Tegene T. Tole, Jean I. du Toit, Cornelia G. C. E. van Sittert, Johan H. L. Jordaan and Hermanus
HermanusC.M.Vosloo*
C. M. Vosloo *
ResearchFocusAreaforChemicalResourceBeneficiation,CatalysisandSynthesisResearchGroup,
Research Focus Area for Chemical Resource Beneficiation, Catalysis and Synthesis Research Group, North‐
North-WestUniversity,HoffmannStreet,2531Potchefstroom,SouthAfrica;[email protected](T.T.T.);
West University, Hoffmann Street, 2531 Potchefstroom, South Africa; [email protected] (T.T.T.);
[email protected](J.I.d.T.);[email protected](C.G.C.E.v.S.);[email protected](J.H.L.J.)
[email protected] (J.I.d.T.); [email protected] (C.G.C.E.v.S.); [email protected] (J.H.L.J.)
* Correspondence:[email protected];Tel.:+27-18-299-1669
* Correspondence: [email protected] (H.C.M.V.); Tel.: +27‐18‐299‐1669
AcademicEditors:AlbertDemonceau,IleanaDragutanandValerianDragutan
Academic Editors: Albert Demonceau, Ileana Dragutan and Valerian Dragutan
Received:24November2016;Accepted:3January2017;Published:10January2017
Received: 24 November 2016; Accepted: 3 January 2017; Published: date
Abstract: Fourpyridinylalcoholsandthecorrespondinghemilabilepyridinylalcoholatoruthenium
Abstract: Four pyridinyl alcohols and the corresponding hemilabile pyridinyl alcoholato ruthenium
carbene complexes of the Grubbs second generation-type RuCl(H IMes)(OˆN)(=CHPh), where
2
OˆcNarb=en1e- (c2o(cid:48)m-ppylreixdeisn yolf) -1th,1e- dGipruhbebnsy lsemcoentdh agneonleartaot,io1n-‐(t2y(cid:48)p-pey RriudCinl(yHl)2-I1M-(e2s(cid:48))-(cOh^loNr)o(p=ChHenPyhl)),, 1w-phheerne y l
mOet^hNan o=l a1to‐(,2′‐1p-y(2ri(cid:48)d-pinyyrli)d‐1in,1y‐dl)i-p1h-(e4n(cid:48)-yclh lmoreotphahneonlyalt)o,1, -p1‐h(e2n′‐pyylrimdientyhla)‐n1o‐(l2a′t‐ochloarnodph1en-(y2l(cid:48))-,p1‐yprhideninyyl l)-
methanolato, 1‐(2′‐pyridinyl)‐1‐(4ʹ‐chlorophenyl),1‐phenyl methanolato and
1-(2(cid:48)-methoxyphenyl),1-phenyl methanolato, are synthesized in very good yields. At high
1‐(2′‐pyridinyl)‐1‐(2′‐methoxyphenyl),1‐phenyl methanolato, are synthesized in very good yields.
temperatures,theprecatalystsshowedhighstability,selectivityandactivityin1-octenemetathesis
At high temperatures, the precatalysts showed high stability, selectivity and activity in 1‐octene
compared to the Grubbs first and second generation precatalysts. The 2-/4-chloro- and
metathesis compared to the Grubbs first and second generation precatalysts. The 2‐/4‐chloro‐ and
4-methoxy-substituted pyridinyl alcoholato ligand-containing ruthenium precatalysts showed
4‐methoxy‐substituted pyridinyl alcoholato ligand‐containing ruthenium precatalysts showed high
high performance in the 1-octene metathesis reaction in the range 80–110 ◦C. The hemilabile
performance in the 1‐octene metathesis reaction in the range 80–110 °C. The hemilabile
4-methoxy-substituted pyridinyl alcoholato ligand improved the catalyst stability, activity and
4‐methoxy‐substituted pyridinyl alcoholato ligand improved the catalyst stability, activity and
selectivityfor1-octenemetathesissignificantlyat110◦C.
selectivity for 1‐octene metathesis significantly at 110 °C.
KeKyewyworodrsd:sa: lkaelnkeenmee tamtheetastihs;ehsiesm; ilhaebmileilalibgialen dl;ipgyanridd;i nyplyarildcoinhyoll ;raulcthoehnoilu; mrucathrebneniuem;G rcuabrbbse-ntye;p e
prGecrautbablys‐stty;p1e-o pcrteecnaetalyst; 1‐octene
1.1I.n Itnrotrdoudcutcitoinon
ThTehew welel-lld‐defiefnineeddG Grruubbbbss fifirrsstt ((11 aanndd 22)) [[11––44]] aanndd sseeccoonndd ((33)) [[55––77] ]ggeenneeraratitoino nprperceactaatlaylsytss tasrae re
fofuonudndto tob ebev evreyrya catcitviveea annddr roobbuussttt toowwaarrdd aa llaarrggee nnuummbbeerr ooff ssuubbssttrraatteess. .TThhesees epprerceactaatlaylsytsst hsohwoewveevr er
shsohwowededa catcivtiivtiytya tatr orooommt etemmppeerraattuurree iinn aallkkeennee mmeettaatthheessiiss rreeaaccttiioonnss [[22,8,8,9,9].] .AAltlhthououghg hthtehye ypepreforfromr m
execxeclleelnletnat tarto roomomte tmempperearatuturere,,t htheeyyh haavveea a rreellaattiivveellyy sshhoorrtt ccaattaallyyttiicc lliiffeettiimmee. .
N N N N
Ph P Cy P
3 Cl 3 Cl Cl Cl
Ru Ph Ru CHPh Ru CHPh Ru CHPh
Cl Cl Cl O
PPh Ph PCy PCy
3 3 3 (cid:2) N
C
1 2 3
Ph
4
ThTehefi rfsirts3t1 3P1PN NMMRRi ninvveessttiiggaattiioonn ooff aa hheemmiillaabbiillee pprrooppeerrttyy oof fSS‐O-O lilgigaanndds sinin PPdd cocmomplpelxeexse osfo tfhteh e
typtyepter atnrasn-[sP‐[dP(dO(OOOCC-C‐C6H6H4-42‐2SSRR-‐kk11-‐OO))]]PPhh((PPPPhh33))22 ((RR == iPiPr,r ,tBtBuu),) w,whehreerieni nonoen ePPPhP3h l3igliagnadn dis irseprelpaclaedce bdyb y
asau lfsuurlfautor maotofmth eSo-fO ltihgea ndS‐tOo aflfiogradndch eltaot esa,fifnorsdo luctihoenla,twesa,s rienp orstoeldutbioynR, auwbaesn heriempoerrteetda l.b[y1 0 ].
Grubbs-typeprecatalystswithhemilabileligandsshowedgreaterlifetimesandstability[10,11]. Itwas
Catalysts 2017, 7, 22; doi:10.3390/catal7010022 www.mdpi.com/journal/catalysts
Catalysts2017,7,22;doi:10.3390/catal7010022 www.mdpi.com/journal/catalysts
Catalysts 2017, 7, 22 2 of 21
Catalysts2017,7,22 2of21
Raubenheimer et al. [10]. Grubbs‐type precatalysts with hemilabile ligands showed greater lifetimes
aalnsdo sretapboirlitteyd [[1102,1]1th].a Itt twhease laelcstor ornepicoartnedd s[t1e2r]i ctheaffte tchtse, etolegcetrthoenricw ainthd tshteerriicn egffseicztes,a tnodgertighiedri wtyitohf tthhee
hrienmg islaizbeil eanbdid reingtiadtietyli goaf ntdhse, hcaenmpiloasbsiilbel ybiidneflnuteantec elitghaensdtsa,b cilaitny poofstshieblcyo minpflluexentocew thheic hstathbeilbitiyd eonf ttahtee
lciogmanpdleixs atott awchheicdha nthde cboindseenqtuaeten tlliygathned ciast aaltyttaicchpeedr faonrmd acnocnes.eDquifefenrtelyn ttghreo ucaptsalfyotlilco wpeerdfodrimffearnecnet.
dDeifsfiegrnencto gnrcoeupptss foofllionwitieadto drisffienretnhte dveasirgionu csonpcreepcatsta olyf sintsititaotoorbst ianin thteh evramrioalulys -psrweictacthaalybslets itnoi toibattoairns
(tShcehrmemalely1‐)s[w13it]c.hable initiators (Scheme 1) [13].
L1 L1 L1 L1
Cl Cl Cl Cl
Ru CHR Ru Ru CHR Ru C(H)XR
ClL2 ClL X L ClL2
A B C D
L1=PR , H IMes; L2=PR
3 2 3
SchSecmheem 1e. 1D.eDseigsing ncoconncceeppttss ffoorr tthheerrmmaalllyly-s‐wswitcithcahbalebline iitniaittoiarst.ors.
In the design concepts shown in Scheme 1, the intention in all is to slow down or prevent the
InthedesignconceptsshowninScheme1,theintentioninallistoslowdownorpreventthe
ddiissssoocciiaattiioonn ooff LL22.. MMoottiiff AA iiss tthhee ccllaassssiiccaall GGrruubbbbss pprreeccaattaallyyssttss wwhheerree LL22 iiss mmoossttllyy eeiitthheerr PPCCyy3 [[44]] oorr
3
HH2IIMMeess [[77]],, wwhhiillee iinn MMoottiiff DD,, aa hheetteerroo‐-aattoomm lliikkee ssuullffuurr [[1144]] iiss ttyyppiiccaallllyy iinnttrroodduucceedd iinn tthhee aallkkyylliiddeennee
2
ligand of these precatalysts. Hoveyda et al. [15–18] synthesized precatalysts with Motif B that showed
ligandoftheseprecatalysts. Hoveydaetal.[15–18]synthesizedprecatalystswithMotifBthatshowed
exceptional stability that allowed its use in reagent‐grade solvents and/or in air [15], while this motif
exceptionalstabilitythatalloweditsuseinreagent-gradesolventsand/orinair[15],whilethismotif
was also used by Van der Schaaf et al. [14] for the fine‐tuning of gel times for the better handling of
was also used by Van der Schaaf et al. [14] for the fine-tuning of gel times for the better handling
ROMP (ring‐opening metathesis polymerization) in technical processes. In Motif C, where X is
ofROMP(ring-openingmetathesispolymerization)intechnicalprocesses. InMotifC,whereXis
oxygen, the chelating ligand competes in both initiation and coordination with the incoming alkene
oxygen,thechelatingligandcompetesinbothinitiationandcoordinationwiththeincomingalkene
substrate for a vacant coordination site [17]. The synthesis of this design concept was first achieved
substrateforavacantcoordinationsite[17]. Thesynthesisofthisdesignconceptwasfirstachieved
by Grubbs et al. [19] and later by Verpoort et al. [20,21]. Herrmann and co‐workers synthesized the
byGrubbsetal.[19]andlaterbyVerpoortetal.[20,21]. Herrmannandco-workerssynthesizedthe
hemilabile pyridinyl alcoholato ligand‐containing complexes and found low catalytic activity for
hemilabile pyridinyl alcoholato ligand-containing complexes and found low catalytic activity for
ROMP; however, the activity increased with an increase in temperature as was observed for 3 [11]. A
ROMP;however,theactivityincreasedwithanincreaseintemperatureaswasobservedfor3[11].
closely‐related precatalyst was also synthesized by Hafner et al. [22]. Because of the increase in the
Aclosely-relatedprecatalystwasalsosynthesizedbyHafneretal.[22]. Becauseoftheincreaseinthe
catalytic lifetime as a result of hemilability, we were interested in the design concept shown in Motif
catalyticlifetimeasaresultofhemilability,wewereinterestedinthedesignconceptshowninMotifC.
C. In line with this, Jordaan [23] synthesized 4 and other ruthenium‐based precatalysts by modifying
Inlinewiththis,Jordaan[23]synthesized4andotherruthenium-basedprecatalystsbymodifying
the bidentate hemilabile ligand of Herrmann et al. [11] and Hafner et al. [22]. The precatalyst 4 has
thebidentatehemilabileligandofHerrmannetal.[11]andHafneretal.[22]. Theprecatalyst4has
sshhoowwnn aann eennhhaanncceedd ccaattaallyysstt lliiffeettiimmee ccoommppaarreedd ttoo GGrruubbbbss pprreeccaattaallyyssttss aatt 6600 ◦°CC [[2244]].. FFuurrtthheerrmmoorree,, iittss
ooppttiimmuumm tteemmppeerraattuurree iiss 8800 ◦°CC iinn 11-‐oocctteennee mmeettaatthheessiiss..
Our aim is synthesizing a precatalyst that is active, highly selective and having a longer catalytic
Ouraimissynthesizingaprecatalystthatisactive,highlyselectiveandhavingalongercatalytic
lifetime at higher temperatures. This is because in industry, mainly linear alkenes are produced
lifetime at higher temperatures. This is because in industry, mainly linear alkenes are produced
typically at high temperatures (e.g., alkenes are produced in high temperature Fischer–Tropsch
typically at high temperatures (e.g., alkenes are produced in high temperature Fischer–Tropsch
pprroocceesssseess ooppeerraattiinngg aatt ttyyppiiccaallllyy >>330000 °◦CC [[2255]])),, tthhuuss rreedduucciinngg tthhee nneeeedd ttoo lloowweerr pprroocceessss tteemmppeerraattuurreess
too low to add further value to the alkene pool. In this paper, we investigated the influence of an
toolowtoaddfurthervaluetothealkenepool. Inthispaper, weinvestigatedtheinfluenceofan
electron‐withdrawing (Cl) and an electron‐donating (OMe) substituent, ortho or para on one of the
electron-withdrawing(Cl)andanelectron-donating(OMe)substituent,orthoorparaononeofthe
α‐phenyl rings of 4, on its catalytic performance in 1‐octene metathesis. With this aim, the synthesis
α-phenylringsof4,onitscatalyticperformancein1-octenemetathesis. Withthisaim,thesynthesis
and characterization of p‐chloro‐, p‐methoxy‐ and o‐chloro‐substituted pyridinyl alcohols and the
and characterization of p-chloro-, p-methoxy- and o-chloro-substituted pyridinyl alcohols and the
corresponding derivatives of 4 were successfully performed. Investigations of their catalytic activity,
correspondingderivativesof4weresuccessfullyperformed. Investigationsoftheircatalyticactivity,
sseelleeccttiivviittyy aanndd ssttaabbiilliittyy iinn 11-‐oocctteennee mmeettaatthheessiiss wweerree mmaaddee iinn tthhee tteemmppeerraattuurree rraannggee ooff 7700––111100 ◦°CC..
2. Results and Discussion
2. ResultsandDiscussion
22..11.. SSyynntthheessiiss ooff PPyyrriiddiinnyyll AAllccoohhoollss
AAlltthhoouugghh tthheerree aarree mmoorree ththanan 212 1didffieffreernetn mt emthetohdosd [s26[]2 6o]f osyfnstyhnetshizeisnizgi npgyrpidyirniydli naylcloahlocolsh, owlse,
wfoellofowlleodw tehde thsterasitgrhaitgfohrtwfoarrwda radnda nrdelraetilvateilvye lsyimsipmlep lseysnythnethtiect ircoruotue teofo fHHererrmrmanann neet taall. .[[2277]] ttoo
ssyynntthheessiizzee tthhee ppyyrriiddiinnyyll-‐aallccoohhoollss 55––88 ((SScchheemmee 22)).. AAss wwaass mmeennttiioonneedd eeaarrlliieerr,, oouurr aaiimm iiss ssyynntthheessiizziinngg
1‐(2′‐pyridinyl)‐1,1‐diphenyl‐methanols having chlorine and/or methoxy substituents on one of the
phenyl rings.
Catalysts2017,7,22 3of21
1-(2(cid:48)-pyridinyl)-1,1-diphenyl-methanolshavingchlorineand/ormethoxysubstituentsononeofthe
pCChaatteaallnyyssyttsls 22r00in1177g,, s77.,, 2222 33 ooff 2211
11..nnBBuuLLii,,EEtt OO,,--7788°°CC,, 3300mmiinn OOHH
22
BBrr NN 22..kkeettoonnee,,EEtt22OO,,--2200°°CC,,2200--2255°°CC,,22hh NN RR == HH ((55))
33..HH33OO++ RR PPhh RR == 22--CCll ((66))
RR == 44--CCll ((77))
OO
RR == 44--OOMMee ((88))
kkeettoonnee== RR PPhh
SSccShhceehmmemee e22..2 SS.yySynnntthhtheeesssiiisss ooofff pppyyyrrriiidddiniinnyyyllla laacllocchooohhloosll5ss– 585.––88..
TTThhheee sssyyynnnttthhheeesssiiisss ooofff tthhthee e aallaccloochhooohllossl wws waassa ppseeprrffeoorrrfmmoreemdde iidnn aain ddraryyd aarnnydda iinnndeerrtti ntthherrrteeeet‐‐hnnreeeccekk-n rreoocuuknnddro‐‐bbuoonttdttoo-bmmoeetdtdo ffmllaaessdkk
flbbyyas sskttiirrbrryiinnsggt ittrhhreein mmgiitxxhttuuerreme ooixff t unnBrBeuuLLoiif ssnooBlluuuttLiiooinns owwluiittthhi o 22n‐‐bbwrrooimmthoopp2-yybrrriiddomiinnoee,,p iiynnr idddiiieenttehh,yylli neettdhhieeerrt huuynnlddeeerrth ccerrryyoouggneednneiiccr
c((−−ry7788o g°°eCCn))i cccoo(nn−dd7iitt8iioo◦nnCss).. TTcohhnee dlliiittthhioiiuunmms. ssTaahllttess oolifft hppiyyurrmiiddiisnnayyltllsss wwofeerrpeey ttrhhideeinnn yaalllllsoowwweeeddre ttooth rreeenaaccattl lwwoiwitthhe dbbeetnnozzrooeppahhceetnnwoonniteeh,,
b22‐e‐ccnhhzlloooprroohbbeeennnozznooepp,hh2ee-nncoohnnloeer,,o b44e‐‐ncchhzollooprrhooebbneennoznzooepp, hh4ee-cnnhoolnnoeero booerrn z44o‐‐pmmheeettnhhooonxxeyybboeernn4zz-oompphheteehnnoooxnnyeeb eaanffztteeorrp hrreaaniiossiinnnegg afttthheeer
rtteeammisippneegrraattthuuerreet ettoom −−p22e00r a°°CCtu ffrooerr t22o hh−,, ww20hhii◦ccChh,, fiinnor tthh2ee hee,nnddw,, hwwicaahss ,rraainiisseetdhde ttooe rrnoodoo,mmw ttaeesmmrppaeeisrraaetdtuurrteeo,, ffrooollolloomwwteeeddm bbpyye ccraaarrteeuffruuell,
fhhoyyldldorrwoolleyydssiissb..y TThhcaiissr errfeeussuulllhtteeyddd riinno l44y88s%%is. 11,,T11‐‐hddiiispprhheeesnnuyyltll‐‐e11d‐‐((22in′′‐‐pp4yy8rr%iiddii1nn,1yy-lld))‐‐immpheettehhnaaynnlo-o1ll - (((552))(cid:48),,- p8899y%%rid 11i‐‐n((22y′′l‐‐)cc-hhmllooerrtoohppanhhoeennlyy(5ll)))‐‐,
8119‐‐pp%hhee1nn-(yy2ll(cid:48)‐‐-11c‐‐h((22lo′′‐‐rppoyyprrhiiddeininnyyylll)))-‐‐1mm-peehtthheaannnyool-ll1 (-(66(2)),,(cid:48) -8p800y%%ri d11i‐‐n((y44′′l‐‐)cc-hhmllooertrhooappnhhoeelnn(yy6ll))),‐‐118‐‐0pp%hhee1nn-yy(4ll‐‐(cid:48)11-c‐‐(h(22l′′o‐‐pproyyprriihddeiinnnyyylll)))-‐‐1mm-peetthhheaannnyoolll-
1((77-())2 (cid:48)aa-pnndydr i77d00i%n%y l11)-‐‐m((44e′′‐‐tmmhaeentthhooolxx(7yy)ppahhneednnyy7ll0))‐‐%11‐‐1pp-hh(4een(cid:48)n-yymll‐‐e11t‐‐h((o22′′x‐‐ypppyyhrriieddniinnyyyl)ll-))1‐‐-mmpeehttehhnaaynnloo-1ll -(((288(cid:48)))-..p yTTrhhieed inssttyrrluu)-ccmttuuerrteehssa noooff ltt(hh8ee).
Taallhcceoohhsootrlluss cwwtueerrreees eeollfuuccthiiddeaaatteelcddo huuossilinsnggw IIeRRre ((IeInnluffrrcaaidrreeaddte dssppueeccsttirrnoogmmIeeRttrr(yyI))n,, frNNaMMredRR s((pNNeuuccctrlleeoaamrr eMMtryaa)gg,nnNeettMiicc RRRee(Nssoounncaalnneacceer
MssppaeegccttnrreootmmiceeRttrreyys))o aannnaddn cMMeSSs p((MMecaatrssoss mSSppeteerccyttrr)ooammneedttrrMyy))S ((ss(eeMee aSSseesccttSiioopnne c33t))r..o CCmooemmtrppyaa)rr(eesdde ettooS eSScppteeiorrbbneerr3 )ee.tt aaCll..o’’ssm [[p2288a]]r eyydiieetlldod
S((11p44e..5r5b%%e))r,, ooeuutrra yly.i’ieselldd[2 ff8oo]rr y 55i eiissld ffaa(rr1 bb4e.e5tt%tteerr),.. TTohhueeryyy rrieeeaaldcctteefddor pp5iiccooislliinnfaiiccr aabcceiitddt eaarnn.ddT bbheeennyzzoorppeahhceetnneoodnnepe i((c11o::66li))n iiinnc ppa‐‐ccciyydmmaeennndee
bssooellnvvzeeonnptt hffooenrr oaanbbeoouu(1tt :666 )hhi..n MMp-cccCCyaamrrtteyyn eeett s aaolll..v [[e22n99]]t ifinnocrcrraeebaaosseeuddt 6tthhhee. yyMiieecllCdd a oorfft y55 ettoot a22l55.%%[2 9bb]yyi naacddrddeiainnsgged tthhteeh eppyiicciooellliidnniioccf aa5cctiiddo
2oo5vv%eerrb aay 11a––d33d hhin pgpeetrhriieooddp icttooo laain rriceeffalluucixxdiinnoggv eppr‐‐ccayy1mm–3eennheep sseoorillouudttiiootonn aoorffe bbfleeunnxzzinoopgphhpee-cnnyoomnneee..n UUesssoiinnluggt ittohhnee ossfaambmeeen zpporrpoohcceeeddnuuonrreee,,.
UMMscciCCngaarrttthyye eestta maall..e [[p22r99o]]c sseyydnnuttrhheee,ssMiizzceeCdda 22rt55y%%e tooaff l.77[,, 2ww9]hhsiiycchhn tiihsse ttshhizrreeedee 2ttii5mm%eesso fllee7ss,ssw tthhhiaacnnh ooisuutrrh yryeiieeelltddim.. TTehhseeleyys,, shhtoohwwaneevvoeeurrr,,
yooibbettlaadii.nnTeeddh e y77, h((66o88w%%e))v eaar,nnoddb t66a in((44e22d%%7))( 6bb8yy% )ffiiarrnssttd pp6rr(ee4pp2aa%rri)innbggy fitthhreest pnnrBBeuupLLaiir inffooglllltoohwweeenddB ubbLyyi frroeellaaoccwttiinnedgg biiytt rwweaiittchhti n22g‐‐
ibbtrrwoommithoopp2yy-brriirddoiimnneeo paayttr id−−i66n00e––−−a44t00− 6°°0CC–.. − TT4hh0ee◦ Cll.iittThhhiiuuemmli thssiaaullmtt oosfaf lt22o‐‐bbfrr2oo-mmbroooppmyyorrpiiddyiirnnieed inwweaawss attshhteehnne nrrreeeaaaccctteeteddd wwwiiittthhh
444-‐‐ccchhhlllooorrrooobbbeeennnzzzoooppphhheeennnooonnneee aaannnddd 222‐-‐ccchhhlllooorrrooobbbeeennnzzzoooppphhheeennnooonnneee aaattt −−−666000 °°◦CCC aaannnddd ttthhheeennn aaallllllooowwweeeddd tttooo rrreeeaaacccttt fffooorrr 222 hhh aaattt
−−−444000 °°◦CCC.. .PPPyyyrrriiddidiinninyyyll laaallcclcooohhhoooll l888 wwwaaasss sssyyynnnttthhheeesssiiizzzeeeddd fffooorrr ttthhheee fffiiirrrsssttt tttiiimmmeee...
222...222... SSSyyynnnttthhheeesssiiisss ooofff ttthhheee LLLiiittthhhiiiuuummm SSSaaallltttsss aaannnddd ttthhheee CCCooorrrrrreeessspppooonnndddiiinnnggg CCCooommmpppllleeexxxeeesss
TTThhheee llliiittthhhiiiuuummm sssaaallltttsss ooofff ttthhheee aaalllcccooohhhooolllsss 555–––888 wwweeerrreee ppprrreeepppaaarrreeeddd iiinnn aaa SSSccchhhllleeennnkkk tttuuubbbeee bbbyyy ssstttiiirrrrrriiinnnggg ttthhheee pppyyyrrriiidddiiinnnyyylll
aaalllcccooohhhooolllsss wwwiiittthhh nnnBBBuuuLLLiii sssooollluuutttiiiooonnn iiinnn TTTHHHFFF aaattt rrroooooommm ttteeemmmpppeeerrraaatttuuurrreee iiinnn aaannn aaarrrgggooonnn aaatttmmmooosssppphhheeerrreee (((SSSccchhheeemmmeee 333))) [[[222222]]]...
TTThhheee yyyiiieeelllddd pppeeerrrccceeennntttaaagggeee ooofff ttthhheee llliiittthhhiiiuuummm sssaaallltttsss ooofff ttthhheee pppyyyrrriiidddiiinnnyyylll-‐‐aaalllcccooohhhooolllsss wwwaaasss nnnooottt cccaaalllcccuuulllaaattteeeddd,,, aaasss ttthhheee llliiittthhhiiiuuummm
sssaaallltttsss aaarrreee vvveeerrryyy ssseeennnsssiiitttiiivvveee tttooo mmmoooiiissstttuuurrreee aaannnddd oooxxxyyygggeeennn (((aaaiiirrr)))... TTThhheee llliiittthhhiiiuuummm sssaaallltttsss wwweeerrreee kkkeeepppttt iiinnn ttthhheee SSSccchhhllleeennnkkk tttuuubbbeee
uuunnndddeeerrr ttthhheee aaarrrgggooonnn aaatttmmmooosssppphhheeerrreee fffooorrr ttthhheee sssyyynnnttthhheeesssiiisss ooofff ttthhheee cccooommmpppllleeexxxeeesss ssshhhooowwwnnn iiinnn SSSccchhheeemmmeee 444...
OOHH OOLLii
RR == HH ((55)) RR == HH ((99))
RR == 22--CCll ((66)) NN NN RR == 22--CCll ((1100))
nnBBuuLLii,,TTHHFF,,2200--2255°°CC,,22hh
RR == 44--CCll ((77)) RR PPhh RR PPhh RR == 44--CCll ((1111))
RR == 44--OOMMee ((88)) RR == 44--OOMMee ((1122))
SScchhSeecmmheee m 33..e SS3yy.nnSttyhhneetthtiiecct irrceerpperrpeersseeesnnenttaatattiitooionnn ooofff ttthhheee sssyyynnnttthhheeesssisiisso ooffft htthheeeli tllhiittihhuiimuummsa lsstaasllottssf pooyff rppidyyirrniiyddliinnalyycllo aahlloccloos.hhoollss..
TThhee lliitthhiiuumm ssaallttss ooff tthhee ppyyrriiddiinnyyll mmeetthhaannoollss 99––1122 wweerree aaddddeedd iinnttoo aa SScchhlleennkk ttuubbee ccoonnttaaiinniinngg aa
Thelithiumsaltsofthepyridinylmethanols9–12wereaddedintoaSchlenktubecontaininga
TTHHFF ssoolluuttiioonn ooff tthhee GGrruubbbbss 22 pprreeccaattaallyysstt iinn aann aarrggoonn aattmmoosspphheerree aanndd ssttiirrrreedd ttoo rreessuulltt iinn tthhee GGrruubbbbss
THFsolutionoftheGrubbs2precatalystinanargonatmosphereandstirredtoresultintheGrubbs
22‐‐ttyyppee pprreeccaattaallyyssttss 44 aanndd 1133––1155,, aass sshhoowwnn iinn SScchheemmee 44..
2-typeprecatalysts4and13–15,asshowninScheme4.
TThhee nniittrrooggeenn cchheellaattiioonn ooff tthhee ppyyrriiddiinnyyll‐‐aallccoohhoollaattoo lliiggaannddss ttoo tthhee rruutthheenniiuumm mmeettaall ccaann bbee sseeeenn
ffrroomm tthhee ddoowwnnffiieelldd HH‐‐66′′ 11HH NNMMRR cchheemmiiccaall sshhiiffttss ooff tthhee ccaattaallyyssttss ccoommppaarreedd ttoo tthhee ccoorrrreessppoonnddiinngg ffrreeee
lliiggaannddss ((TTaabbllee 11)).. IItt iiss aallssoo sseeeenn ffrroomm tthhee uupp‐‐ffiieelldd 11HH NNMMRR cchheemmiiccaall sshhiifftt ooff tthhee pprreeccaattaallyysstt ccaarrbbeennee
pprroottoonn ((αα‐‐HH)) ccoommppaarreedd ttoo tthhaatt ooff GGrruubbbbss 22‐‐pprreeccaattaallyysstt.. TThhee eelleeccttrroonn ddoonnaattiioonn ooff tthhee ppyyrriiddiinnyyll
aallccoohhoollaattoo nniittrrooggeenn ttoo tthhee rruutthheenniiuumm mmeettaall,, dduurriinngg cchheellaattiioonn,, wwoouulldd ppoossssiibbllyy iinnccrreeaassee tthhee eelleeccttrroonn
ddeennssiittyy aarroouunndd tthhee rruutthheenniiuumm aanndd aallssoo tthhee bbeennzzyylliiddeennee pprroottoonn.. TThhiiss wwiillll sshhiifftt iittss rreessoonnaannccee uupp‐‐ffiieelldd
ccoommppaarreedd ttoo tthhee GGrruubbbbss 22‐‐pprreeccaattaallyysstt.. SSiimmuullttaanneeoouussllyy,, tthhee eelleeccttrroonn ddeennssiittyy oonn tthhee ppyyrriiddiinnyyll‐‐
aallccoohhoollaattoo lliiggaanndd nniittrrooggeenn wwiillll ddeeccrreeaassee,, aanndd tthhiiss wwoouulldd rreessuulltt iinn tthhee ddoowwnnffiieelldd cchheemmiiccaall sshhiifftt ooff tthhee
HH‐‐66′′ ooff ppyyrriiddiinnee.. AA ddoowwnnffiieelldd cchheemmiiccaall sshhiifftt ooff aa pprroottoonn iiss iinnddiiccaattiivvee ooff tthhee ddeeccrreeaassee oonn tthhee eelleeccttrroonn
Catalysts 2017, 7, 22 4 of 21
density around the atom [30]. Therefore, the chelation of the pyridinyl‐alcoholato ligands to the
ruthenium metal is evident. The precatalysts 13–15 were all synthesized for the first time, as we did
Catalysts2017,7,22 4of21
not find any reported in the literature.
OLi N N
H IMes
2
N Cl Cl
THF,20-25°C,48 h
R Ph + Ru CHPh Ru CHPh
Cl O
PCy
3 (cid:2) N R = H (4)
R = H (9) 3 C R = 2-Cl (13)
R = 2-Cl (10) Ph R = 4-Cl (14)
R = 4-Cl (11) R R = 4-OMe (15)
R = 4-OMe (12)
SScchheemmee 44.. SSyynntthheettiicc rreepprreesseennttaattiioonn ooff tthhee ssyynntthheessiiss ooff tthhee rruutthheenniiuumm-‐bbaasseedd pprreeccaattaallyyssttss..
TThabelen it1r.o gSeelnecctehde la1Hti oNnMofRt h(eNpucylreiadr inMyal-ganlectoich oRleastoonlaigncaen)d cshteomtihcael rushthiftesn iouf mthme estyanltchaensizbeed seen
fromptrheecadtaolywsntsfi, GelrdubHbs- 62(cid:48) a1nHd pNyMridRincyhl eamlcoichaollss. hifts of the catalysts compared to the corresponding
free ligands (Table 1). It is also seen from the up-field 1H NMR chemical shift of the precatalyst
Precatalyst δα‐H (ppm) 1 δH‐6′ (ppm) 2 δH‐6′ (ppm) 3
carbeneproton(α-H)comparedtothatofGrubbs2-precatalyst. Theelectrondonationofthepyridinyl
3 19.19 4 ‐ ‐
alcoholatonitrogentotherutheniummetal,duringchelation,wouldpossiblyincreasetheelectron
4 17.10 9.61 8.59
densityaroundtherutheniumandalsothebenzylideneproton. Thiswillshiftitsresonanceup-field
13 17.34/17.26 9.76 8.55
comparedtotheGrubbs2-precatalyst. Simultaneously,theelectrondensityonthepyridinyl-alcoholato
14 17.11/17.09 9.70–9.55 8.59
ligandnitrogenwilldecrease, andthiswouldresultinthedownfieldchemicalshiftoftheH-6(cid:48) of
15 17.10/17.08 9.63–9.60 8.65
pyridine. Adownfieldchemicalshiftofaprotonisindicativeofthedecreaseontheelectrondensity
1 1H NMR chemical shift of the precatalyst carbene proton (Ru = CH); 2 1H NMR chemical shift of the
aroundtheatom[30]. Therefore,thechelationofthepyridinyl-alcoholatoligandstotheruthenium
pyridinyl methanolato ligand (C5H3N) H‐6′; 3 1H NMR chemical shift of the pyridinyl methanol
metalisevident. Theprecatalysts13–15wereallsynthesizedforthefirsttime,aswedidnotfindany
(C5H3N) H‐6′; 4 obtained from [23].
reportedintheliterature.
The appearance of two peaks in the 1H NMR spectra of the precatalysts 13–15 is due to the
chiraTliatbyl eof1 .thSee lpeyctreiddin1Hyl NaMlcoRho(Nlautcol elairgaMnadg naet titcheR eαso‐pnoansicteio)nc,h ewmhicicahl srheisftusltosf itnh ethsey nftohremsizaetidon of
diastperreecoamtaleyrsst.s A,G sriumbbilsa2r apnhdenpyormideinnyolna licso ohboslse.rved in the 13C NMR spectra.
2.3. Metathesis RPreeaccatitoanlyss t δα-H(ppm)1 δH-6(cid:48) (ppm)2 δH-6(cid:48) (ppm)3
The metathesi3s of 1‐octene resu1l9t.s1 9in4 a mixture of pr-oducts. The self‐me-tathesis of 1‐octene
4 17.10 9.61 8.59
results in the formation of 7‐tetradecene (cis and trans) and ethene, named primary metathesis
13 17.34/17.26 9.76 8.55
products (PMPs). T1h4e double bond1 i7n.1 11‐/o1c7t.e0n9e also unde9r.g70o–e9s. 5i5somerization to8 f.5o9rm internal olefins.
The isomerization1 5products (IPs1)7 .1u0n/d1e7r.0g8o self‐meta9t.h63e–s9is.6 0and cross‐met8a.6th5esis reactions or
second1a1rHyN mMeRtachthemesiciasl srheiaftcotfiothnesp ryeicealtadliynstgc atrhbeen veaprroiotouns( Raulk=eCnHe)s; 2in1H tNheM Rracnhegme icCal3–shCif1t6o nftahmepeydri dsiencyolndary
metathmeestihsa nporloatdouligcatsn d(S(CM5HP3sN).) THa-6b(cid:48);le3 12H sNuMmRmchaermiziceasl sthhifet ovfathreiopuysri dmineytlamthetehsaniso lr(eCa5cHt3iNon)Hs -a6n(cid:48);d4o tbhtaei npedroducts
from[23].
of 1‐octene in the presence of ruthenium alkylidene catalysts.
Theappearanceoftwopeaksinthe1HNMRspectraoftheprecatalysts13–15isduetothechirality
Table 2. Summary of products of 1‐octene metathesis in the presence of ruthenium alkylidene
ofthepyridinylalcoholatoligandattheα-position,whichresultsintheformationofdiastereomers.
precatalysts. PMPs (primary metathesis products); IPs (isomerization products); SMPs (secondary
Asimilarphenomenonisobservedinthe13CNMRspectra.
metathesis products).
2.3. MetathesisRReeaaccttiioonns Substrate 1 Products1 Abbreviation
Primary metathesis ‐ ‐ ‐
Themetathesisof1-octeneresultsinamixtureofproducts. Theself-metathesisof1-octeneresults
intheformatioSnelof‐fm7-etteattrhaedseicse ne(cisanCd=Ctr7a ns)andethene,Cn=aCm +e dCp7=rCim7 arymetathesisPpMroPdsu cts(PMPs).
ThedouIbsolembeornizdatinio1n- octenealsoundCer=gCo7e sisomerizCa2t=iCon6 +to Cf3o=rCm5 +in Cte4=rnCa4l olefins. ThIePsis omerization
Secondary metathesis 2 ‐ ‐ ‐
products(IPs)undergoself-metathesisandcross-metathesisreactionsorsecondarymetathesisreactions
Self‐metathesis C2=C6 C2=C2 + C6=C6
yieldingthevariousalkenesintherangeC3–C16namedsecondarymetathesisproductSsM(SPMs Ps).Table2
Cross‐metathesis C=C7 + C2=C6 C2=C7 + C=C6 + C=C2 + C6=C7
summarizesthevariousmetathesisreactionsandtheproductsof1-octeneinthepresenceofruthenium
1 Hydrogens are omitted for simplicity; 2 only representative examples of SMPs are shown.
alkylidenecatalysts.
Catalysts2017,7,22 5of21
Catalysts 2017, 7, 22 5 of 21
Table 2. Summary of products of 1-octene metathesis in the presence of ruthenium alkylidene
precatalysts. PMPs(primarymetathesisproducts);IPs(isomerizationproducts);SMPs(secondary
2.3.1. Effect of Temperature on Catalyst Activity and Selectivity in 1‐Octene Metathesis
metathesisproducts).
The effect of temperature on the catalytic activities of precatalysts 13–15 was investigated for
temperaturRese aocft i7o0n, 80, 90, 100 anSdu b1s1t0r a°tCe.1 The results of theP rmodeutactthse1sis reaction ofA 1b‐borcetveinaeti ownith 13
and 14P aritm 7a0r y°Cm eatraeth neosits included in th-e figures (Figures 1 and 2-) as a result of using dif-ferent time
intervalsS eflofr-m seatmathpelsei scollection thaCn= Cth7ose of 80–110 °C. CA=C s+umC7m=Car7y of the resultsP, MhPoswever, is
included Iisno mTearbizleasti o3n and 4. The metCa=thCe7sis of 1‐octenCe 2w=Cas6 a+lCso3 =pCe5rf+oCrm4=eCd4 using precaItPaslyst 4 at its
Secondarymetathesis2 - - -
optimum temperature (80 °C) with the intention to compare it with the newly‐synthesized
Self-metathesis C =C C =C +C =C
2 6 2 2 6 6
precatalysts and to see the influence of the substituents on the catalytic activity. A comSpMarPisson of the
Cross-metathesis C=C +C =C C =C +C=C +C=C +C =C
7 2 6 2 7 6 2 6 7
catalytic activity and selectivity of precatalysts 13–15 is also made with precatalysts 2–4 at their
1Hydrogensareomittedforsimplicity;2onlyrepresentativeexamplesofSMPsareshown.
optimum temperatures. Furthermore stabilities of the precatalysts were compared in the temperature
r2a.3n.g1e.sE 7ff0e–c1t1o0f °TCem. Tpheer aretusureltos nofC tahtea lmysettaAtchteivsiist yreaancdtioSnelse actriev pitryeisnen1t-eOdc bteenloewM. etathesis
The effect of temperature on the catalytic activities of precatalysts 13–15 was investigated for
Table 3. Summary of the catalytic activity of precatalyst 13 for the metathesis of 1‐octene after
temperatures of 70, 80, 90, 100 and 110 ◦C. The results of the metathesis reaction of 1-octene with
540 min.
13 and 14 at 70 ◦C are not included in the figures (Figures 1 and 2) as a result of using different
timTeeimnpte. rvalCsofnovr. 1s am1p‐Olectceonlel e2 ctioPnMtPhsa 2n thoIPsse 2 of8S0M–P1s1 02 ◦C.SA 3 summKaIrn y4 oftheTOreNs u5 lts,hoTwOFe 6v er,is
(°C) (%)
includedinTables3and4. Themetathesisof1-octenewasalsoperformedusingprecatalyst4atits
70 25 75 22.7 0.3 2.0 90.8 4.35 × 10−3 2039 6.3 × 10−2
optim80u mtemp4e6r ature(805◦4C )witht4h4e.2i ntentio0.n1 tocom1.9p areit9w5.7i thth7e.4n0 e×w 10l−y3 -synt3h9e82s ized1p2r.3e c×a 1t0a−l2 ysts
and t9o0 see the9i4n fluence o6f the subs7t1i.7tu ents1o.n3 the c2a0.t7a lytic7a6.c6t ivit1y4..8A4 ×c 1o0m−3 par6is4o56n of t1h9e.9 c×a 1t0a−l2 ytic
100 95 5 69.4 1.5 24.4 72.8 9.48 × 10−3 6242 19.3 × 10−2
activity and selectivity of precatalysts 13–15 is also made with precatalysts 2–4 at their optimum
110 97 3 64.7 1.9 30.2 66.8 12.86 × 10−3 5824 18.0 × 10−2
temperatures. Furthermorestabilitiesoftheprecatalystswerecomparedinthetemperatureranges
1 Conversion; 2 yield in mol % and Ru/1‐octene molar ratio 1:9000; 3 selectivity in percent toward PMPs;
70–110◦C.Theresultsofthemetathesisreactionsarepresentedbelow.
4 initiation constant in mol/s; 5 turnover number (TON) = (n%PMPs × [nOct]/[nRu])/100 (Oct = 1‐
octene); 6 turnover frequency (TOF) = TON/s.
Table3.Summaryofthecatalyticactivityofprecatalyst13forthemetathesisof1-octeneafter540min.
Precatalyst 13 showed a progressive activity in 1‐octene metathesis in the temperature range of
Temp.(◦C) Conv.1(%) 1-Octene2 PMPs2 IPs2 SMPs2 S3 KIn4 TON5 TOF6
70–110 °C (Table 3 and Figure 1). The activity of 13, however, is very slow at 70 °C, resulting only in
70 25 75 22.7 0.3 2.0 90.8 4.35×10−3 2039 6.3×10−2
25% c8o0nversion o46f 1‐octene 5t4o 22.7%4 4P.2MPs, 02.1.0% SM1.9Ps and95 .70.3% 7.I4P0s× i1n0 −5340 m3i9n82. Alt1h2o.3u×gh10 −th2e
selecti9v0ity is goo9d4 (91%), t6he initia7t1io.7n con1s.3tant (2K0I.n7), tur7n6.o6ver 14n.8u4m×b1e0−r 3(TO6N45)6 and1 9.t9u×rn1o0−v2er
100 95 5 69.4 1.5 24.4 72.8 9.48×10−3 6242 19.3×10−2
frequency (TOF) are low. The activity, however, was almost doubled on increasing the reaction
110 97 3 64.7 1.9 30.2 66.8 12.86×10−3 5824 18.0×10−2
temperature to 80 °C, resulting in 46% conversion of 1‐octene to 44.2% PMPs, 1.9% SMPs and
1 Conversion;2 yieldinmol%andRu/1-octenemolarratio1:9000;3 selectivityinpercenttowardPMPs;
1.1% IP4sin. itTiahtieon sceolnesctatinvtiitnym aoll/sos; 5intucrrneoavseerdn utmob e9r6(%TO, Nr)e=su(nl%tinPMg Pisn× a[ nOsicgt]n/i[fniRcaun])t/ 1i0n0c(rOecats=e1 -ionc teKnIen),; TON
and TO6Ftu. rnoverfrequency(TOF)=TON/s.
100 100
80 80
%) 60 %) 60
ne ( s (
e P
Oct 40 PM 40
1-
20 20
0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Reaction time (min) Reaction time (min)
(a) (b)
Figure1.Cont.
Catalysts 2017, 7, 22 7 of 21
Table 4. Summary of the catalytic activity of precatalyst 14 for the metathesis of 1‐octene after
540 min.
Temp Conv. 1
1‐Octene 2 PMPs 2 IPs 2 SMPs 2 S 3 KIn 4 TON 5 TOF 6
(°C) (%)
70 6 94 5.3 0.1 0.8 86 0.71 × 10−3 476 1.57 × 10−2
80 59 41 56.6 0.2 2.4 96 9.22 × 10−3 5097 15.7 × 10−2
90 82 18 75.8 0.2 5.8 93 11.36 × 10−3 6823 21.1 × 10−2
100 79 21 77.0 0.4 2.0 97 14.11 × 10−3 6928 21.4 × 10−2
110 87 13 81.1 0.5 5.0 94 12.75 × 10−3 7298 22.5 × 10−2
1 Conversion; 2 yield in mol % and Ru/1‐octene molar ratio 1:9000; 3 selectivity in percent toward PMPs;
4 initiation constant in mol/s; 5 TON = (n%PMPs × [nOct]/[nRu])/100; 6 TOF = TON/s.
After 3570 min at 70 °C, 66% of the 1‐octene was converted to 65% PMPs, 0.8% SMPs and
0.2% IPs with 99% selectivity, 5854 TON and 2.60 × 10−2 TOF. Although the 1‐octene conversion, PMP
formation, selectivity and TON increased significantly, the rate of the reaction is very slow. The
selectivity (99%) towards PMP formation, however, is excellent at this temperature. This therefore
shows the need for increasing the reaction temperature in order to increase the activity of the
Catpalryesctsa2ta01ly7,s7t ,a2n2d increase the rate of product formation. The reaction temperature was raised to 80 6°Cof 21
Cataalnydst sr 2e0s1u7l,t 7e,d 2 2in 59% 1‐octene conversion to 56.6% PMPs, 5.8% SMPs and 0.2% IPs with 96% selectiv6it oyf, 21
rel5a0tively high KIn (9.22 × 10−3), TON (5097) and TOF (152..57 × 10−2) after 540 min (Table 4). The 1‐octene
conversion and PMP formation increased ten‐fold, while the SMPs and IPs increased only two‐fold
in 540 min. A very large increase in selectivity, initiation constant, TON and TOF is also observed.
40 2.0
The reaction reached equilibrium after 1620 min with 84% 1‐octene conversion to 81.2% PMPs,
2.3% SMPs and 0.28% IPs with 97% selectivity, 7307 TON and 7.5 × 10−2 TOF. Further increasing the
Ps (%)twemi3t0hp 9e3ra%tu sreel etcot i9v0it y°C, 6 r8e2s3u TltOedN i,n 1 18.23%6 × 1 1‐o0c−3t eKnIne acnodn s (%)v21e.r1s1 i.×o5 n10 t−o2 T7O5.F8.% A PltMhoPusg, h5 .a8l%l o Sf MthPe sf aacntodr s0 .(2e%xc eIPpst
SMsel2e0ctivity) showed an increase upon raising the temIPper1a.0ture to 90 °C, further raising the temperature
to 100 °C only increased the PMPs (77%), selectivity (97%), TON (6928), KIn (14.11 × 10−3) and TOF
(21.4 × 10−2). The 1‐octene conversion (79%), SMPs (2.0%) and IPs (0.4%), however, decreased
10 0.5
moderately. The reaction attained equilibrium at 660 min (Figure 2) with 84% 1‐octene conversion to
78.5% PMPs, 5.5% SMPs, 0.2% IPs, 93% selectivity, 7068 TON and 17.9 × 10−2 TOF at 90 °C. It required
0 0
only 0420 m1in00 to re2a0c0h equ3i0l0ibrium40 0at 1005 0°0C (Fi6g0u0re 2) wit0h 79%1 010‐octen20e0 conv3e0r0sion t4o0 075.8%50 P0MPs6,0 0
2.5% SMPs, 0.3 IPsR aenacdt io9n7 %tim see (lmecinti)vity, 6825 TON and 27.08 × 10−2 TOFR. eAact t1io1n0 t i°mCe, (hmoinw)ever, 87% of
the 1‐octene was convert(ecd) to 81.1% PMPs, 5.0% SMPs, 0.5% IP with 94% s(edl)ectivity, 7298 TON,
12.F7i5g u× r1e0 −13. KTIhn ea nindf l2u2e.n5c ×e 1o0f− 2t eTmOpFe arat t5u4r0e monin t.h Te hree a1c‐toioctne ncoem copnovsietriosino nd,u PriMngP manedta tShMesPis f oorf m1‐aotciotenn ea nd
Figure1.Theinfluenceoftemperatureonthereactioncompositionduringmetathesisof1-octeneusing
TON showed a significant increase compared to that at 100 °C. Although the reaction seems to
using the ruthenium alkylidene precatalyst 13: (a) conversion of 1‐octene; (b) formation of PMPs
therutheniumalkylideneprecatalyst13:(a)conversionof1-octene;(b)formationofPMPs(primary
equilibrate at 200 min at 110 °C, the reaction slowly continued showing an increase in the substrate
(primary metathesis products); (c) formation of SMPs (secondary metathesis products); (d) formation
metathesisproducts);(c)formationofSMPs(secondarymetathesisproducts);(d)formationofIPs
conversion, PMP, SMP and IP formation up to 540 min (Figure 2). Considering all of the factors,
o(ifs IoPms e(irsizoamtieornizpartioodnu pctrso)d;Rucut/s)1;- Rocut/e1n‐eoc(t1e:9n0e0 (01):9(0(cid:4)0,08)0 (■◦,C 8;0(cid:78) °,C9;0 ▲◦C, 9;0(cid:7) ,°C10; 0♦◦, C10;0(cid:3) °,C1;1 □0,◦ 1C1)0. °C).
therefore, the optimum temperature for 1‐octene metathesis using precatalyst 14 is 100 °C.
R1e0l0atively large conversion (94%) of the 1‐octen1e0 0into the various products was observed at
90 °C. This, however, resulted in an enormous increase in the SMPs (20.7%) and PMPs (71.7%). The
IPs (1.2860%) showed a very small increase as a result of t8h0e fast conversion to SMPs. A decrease in the
selectivity (77%) and a large increase in the initiation constant, TON and TOF are observed due to
hig%)h co6n0version of 1‐octene to PMPs and SMPs. T%)he 60increase in substrate conversion at 100 and
110ene ( °C is not significant and led to a slight increasePs ( in SMPs (24.4% and 30.2%, respectively) and IPs
(1.5Oct% a4n0d 1.9%, respectively). PM 40
1-A decrease in the selectivity, KIn, TON and TOF was observed due to the slow 1‐octene
convers2i0on. As a result of a very low activity at 70 °C, th20e reaction reached equilibrium, i.e., when no
further PMP formation is observed, at 3630 min, wherein 85% 1‐octene conversion to 80% PMPs, 4.9%
SMPs an0d 0.2% IPs with 94% selectivity, 7214 TON and0 3.3 × 10−2 TOF were observed. On the other
hand, at 800 °C,1 0e0quili2b0r0ium 3w00as at4t0a0ined5 a00t 210600 0min and0 79%1 100‐octe2n0e0 con3v0e0rsion40 0resul5t0in0g in6 0609%
Reaction time (min) Reaction time (min)
PMCaPtasl,y s9ts.4 2%01 7S, 7M, 2P2 s, and 0.2% IPs with 88% selectivity, 6237 TON and 4.94 × 10−2 TOF. At 90 8° Cof, 2 t1h e
(a) (b)
reaction attained equilibrium at 350 min and 94% 1‐octene conversion into 73.4% PMPs, 19.4% SMPs
10 2.5
an d 1.1% IPs with 78% selectivity, 6606 TON and 31.5 × 10−2 TOF. Although equilibrium was attained
at 140 min at 100 and 110 °C, the 1‐octene conversion and product distribution showed significant
8 2.0
variation. At 100 °C, 86% conversion of 1‐octene into 73% PMPs, 12.3% SMPs and 0.7% IPs was
observed with 84% selectivity, 6523 TON and 77.7 × 10−2 TOF. In the case of 110 °C, 94% of 1‐octene
w76a.9sMPs (%) ×c o1n06−v2e TrtOedF. Ainlttoh o7u2g%h tPhMe Phsig, h2e1s%t s eSlMecPtisv iatyn dan Ps (%)1d. 2la%1.r5 gIeP Ps MwPi tfho r7m6%ati osnel aecntdiv TitOy,N 6 w45i6th TrOelNat ivaenldy
S 4 I 1.0
low SMP and IP formation are observed at 70 °C, it took a very long time to reach equilibrium.
Considering the rate of the reaction, high PMPs, low SMPs and IPs, the optimum temperature for the
2 0.5
precatalyst 13 is 80 °C.
The catalytic activity of precatalyst 14 is summarized in Table 4 and Figure 2. A very low
0 0
conversio0n of 1100‐octe2n0e0 (6%30) 0to P4M00Ps (550.03%), 60S0MPs (0.08%) a10n0d IP2s0 0(0.1%30)0 with40 086% 50s0electi6v00ity,
Reaction time (min) Reaction time (min)
476 TON, 0.71 × 10−3 KIn and 1.47 × 10−2 TOF is observed for 1‐octene metathesis. The reaction did not
(c) (d)
even reach equilibrium after 3570 min, at which point, the reaction was stopped.
FiFgiugruere2 .2T. Thheei ninflfulueennccee ooff tteemm ppeerraattuurree oonn tthhee rreeaaccttiioonn ccoommppoossitiitoionn dduurirnign gmmeteattahtehseiss iosf o1f‐o1c-toecntee ne
using the ruthenium alkylidene precatalyst 14: (a) conversion of 1‐octene; (b) formation of PMPs;
usingtherutheniumalkylideneprecatalyst14: (a)conversionof1-octene; (b)formationofPMPs;
(c)(cf)o fromrmataiotinono offS SMMPPss;; ((dd)) ffoorrmmaattiioonn ooff IIPPss; ;RRuu/1/‐o1c-otecnteen (e1:9(10:0900)0 (0■), (8(cid:4)0 ,°8C0; ▲◦C, ;9(cid:78)0 ,°C90; ♦◦,C 1;0(cid:7)0 ,°1C0; 0□,◦ C ;
(cid:3),11110 0°C◦C). ).
Figure 3 and Table 5 summarize the influence of temperature on the 1‐octene metathesis reaction
using precatalyst 15 after 540 min. As was the case with precatalysts 13 and 14, the 1‐octene
metathesis reaction using precatalyst 15 showed relatively low substrate conversion, PMP, IP and
SMP formation and KIn, TON and TOF after 540 min. Generally, it showed low activity.
At 70 °C, the reaction did not reach equilibrium after 2100 min, resulting in 47% 1‐octene
conversion to 45% PMPs, 1.7% SMPs, 0.2% IPs and 96% selectivity, 4032 TON, 3.29 × 10−2 TOF.
Increasing the temperature to 80 °C raised the 1‐octene conversion to 32%, resulting in 53.4% PMPs,
1.4% SMPs, 0.2% IP and 95% selectivity, 2765 TON, 4.46 × 10−3 KIn and 8.5 × 10−2 TOF after 540 min.
The substrate conversion and PMP formation, KIn, TON and TOF are doubled, while the SMP
formation showed a moderate increase, and IP formation decreased. The reaction did not equilibrate
after 2100 min, resulting in 84% 1‐octene conversion to 81% PMPs, 2.9% SMPs, 0.1% IPs,
97% selectivity, 7321 TON and 5.8 × 10−2 TOF. Raising the temperature to 90 °C converted 56% of
1‐octene to 53.4% PMPs, 2.1% SMPs, 0.2% IPs and 96% selectivity, 4802 TON, 7.74 × 10−3 KIn and
14.8 × 10−2 TOF after 450 min. Except for IP formation and selectivity, a substantial increase was
observed in all of the factors upon increasing the temperature by 10 °C.
Catalysts2017,7,22 7of21
Table4.Summaryofthecatalyticactivityofprecatalyst14forthemetathesisof1-octeneafter540min.
Temp(◦C) Conv.1(%) 1-Octene2 PMPs2 IPs2 SMPs2 S3 KIn4 TON5 TOF6
70 6 94 5.3 0.1 0.8 86 0.71×10−3 476 1.57×10−2
80 59 41 56.6 0.2 2.4 96 9.22×10−3 5097 15.7×10−2
90 82 18 75.8 0.2 5.8 93 11.36×10−3 6823 21.1×10−2
100 79 21 77.0 0.4 2.0 97 14.11×10−3 6928 21.4×10−2
110 87 13 81.1 0.5 5.0 94 12.75×10−3 7298 22.5×10−2
1 Conversion;2 yieldinmol%andRu/1-octenemolarratio1:9000;3 selectivityinpercenttowardPMPs;
4initiationconstantinmol/s;5TON=(n%PMPs×[nOct]/[nRu])/100;6TOF=TON/s.
Precatalyst13showedaprogressiveactivityin1-octenemetathesisinthetemperaturerangeof
70–110◦C(Table3andFigure1). Theactivityof13,however,isveryslowat70◦C,resultingonly
in 25% conversion of 1-octene to 22.7% PMPs, 2.0% SMPs and 0.3% IPs in 540 min. Although the
selectivityisgood(91%),theinitiationconstant(K ),turnovernumber(TON)andturnoverfrequency
In
(TOF)arelow. Theactivity,however,wasalmostdoubledonincreasingthereactiontemperatureto
80◦C,resultingin46%conversionof1-octeneto44.2%PMPs,1.9%SMPsand1.1%IPs. Theselectivity
alsoincreasedto96%,resultinginasignificantincreaseinK ,TONandTOF.
In
Relativelylargeconversion(94%)ofthe1-octeneintothevariousproductswasobservedat90◦C.
This, however, resulted in an enormous increase in the SMPs (20.7%) and PMPs (71.7%). The IPs
(1.26%)showedaverysmallincreaseasaresultofthefastconversiontoSMPs. Adecreaseinthe
selectivity(77%)andalargeincreaseintheinitiationconstant,TONandTOFareobservedduetohigh
conversionof1-octenetoPMPsandSMPs. Theincreaseinsubstrateconversionat100and110◦Cis
notsignificantandledtoaslightincreaseinSMPs(24.4%and30.2%,respectively)andIPs(1.5%and
1.9%,respectively).
Adecreaseintheselectivity,K ,TONandTOFwasobservedduetotheslow1-octeneconversion.
In
Asaresultofaverylowactivityat70◦C,thereactionreachedequilibrium,i.e.,whennofurtherPMP
formationisobserved,at3630min,wherein85%1-octeneconversionto80%PMPs,4.9%SMPsand
0.2%IPswith94%selectivity,7214TONand3.3×10−2 TOFwereobserved. Ontheotherhand,at
80 ◦C, equilibrium was attained at 2100 min and 79% 1-octene conversion resulting in 69% PMPs,
9.4%SMPs,and0.2%IPswith88%selectivity,6237TONand4.94×10−2TOF.At90◦C,thereaction
attainedequilibriumat350minand94%1-octeneconversioninto73.4%PMPs,19.4%SMPsand1.1%
IPswith78%selectivity,6606TONand31.5×10−2TOF.Althoughequilibriumwasattainedat140min
at 100 and 110 ◦C, the 1-octene conversion and product distribution showed significant variation.
At100◦C,86%conversionof1-octeneinto73%PMPs,12.3%SMPsand0.7%IPswasobservedwith
84%selectivity,6523TONand77.7×10−2TOF.Inthecaseof110◦C,94%of1-octenewasconverted
into72%PMPs,21%SMPsand1.2%IPswith76%selectivity,6456TONand76.9×10−2TOF.Although
thehighestselectivityandlargePMPformationandTONwithrelativelylowSMPandIPformation
areobservedat70◦C,ittookaverylongtimetoreachequilibrium.Consideringtherateofthereaction,
highPMPs,lowSMPsandIPs,theoptimumtemperaturefortheprecatalyst13is80◦C.
The catalytic activity of precatalyst 14 is summarized in Table 4 and Figure 2. A very low
conversionof1-octene(6%)toPMPs(5.3%),SMPs(0.8%)andIPs(0.1%)with86%selectivity,476TON,
0.71×10−3K and1.47×10−2TOFisobservedfor1-octenemetathesis. Thereactiondidnoteven
In
reachequilibriumafter3570min,atwhichpoint,thereactionwasstopped.
After3570minat70◦C,66%ofthe1-octenewasconvertedto65%PMPs,0.8%SMPsand0.2%IPs
with99%selectivity,5854TONand2.60×10−2TOF.Althoughthe1-octeneconversion,PMPformation,
selectivityandTONincreasedsignificantly,therateofthereactionisveryslow. Theselectivity(99%)
towardsPMPformation,however,isexcellentatthistemperature. Thisthereforeshowstheneedfor
increasingthereactiontemperatureinordertoincreasetheactivityoftheprecatalystandincrease
the rate of product formation. The reaction temperature was raised to 80 ◦C and resulted in 59%
1-octeneconversionto56.6%PMPs,5.8%SMPsand0.2%IPswith96%selectivity,relativelyhighK
In
(9.22 × 10−3),TON(5097)andTOF(15.7 × 10−2)after540min(Table4). The1-octeneconversion
Catalysts2017,7,22 8of21
andPMPformationincreasedten-fold,whiletheSMPsandIPsincreasedonlytwo-foldin540min.
Averylargeincreaseinselectivity,initiationconstant,TONandTOFisalsoobserved. Thereaction
reachedequilibriumafter1620minwith84%1-octeneconversionto81.2%PMPs, 2.3%SMPsand
0.28%IPswith97%selectivity,7307TONand7.5 × 10−2 TOF.Furtherincreasingthetemperature
to 90 ◦C resulted in 82% 1-octene conversion to 75.8% PMPs, 5.8% SMPs and 0.2% IPs with 93%
selectivity, 6823 TON, 11.36 × 10−3 K and 21.1 × 10−2 TOF. Although all of the factors (except
In
selectivity)showedanincreaseuponraisingthetemperatureto90◦C,furtherraisingthetemperature
to100◦ConlyincreasedthePMPs(77%),selectivity(97%),TON(6928),K (14.11×10−3)andTOF
In
(21.4 × 10−2). The 1-octene conversion (79%), SMPs (2.0%) and IPs (0.4%), however, decreased
moderately. Thereactionattainedequilibriumat660min(Figure2)with84%1-octeneconversionto
78.5%PMPs,5.5%SMPs,0.2%IPs,93%selectivity,7068TONand17.9×10−2TOFat90◦C.Itrequired
only420mintoreachequilibriumat100◦C(Figure2)with79%1-octeneconversionto75.8%PMPs,
2.5%SMPs,0.3IPsand97%selectivity,6825TONand27.08×10−2 TOF.At110◦C,however,87%
ofthe1-octenewasconvertedto81.1%PMPs,5.0%SMPs,0.5%IPwith94%selectivity,7298TON,
12.75×10−3K and22.5×10−2TOFat540min. The1-octeneconversion,PMPandSMPformation
In
andTONshowedasignificantincreasecomparedtothatat100◦C.Althoughthereactionseemsto
equilibrateat200minat110◦C,thereactionslowlycontinuedshowinganincreaseinthesubstrate
conversion, PMP, SMP and IP formation up to 540 min (Figure 2). Considering all of the factors,
therefore,theoptimumtemperaturefor1-octenemetathesisusingprecatalyst14is100◦C.
Figure3andTable5summarizetheinfluenceoftemperatureonthe1-octenemetathesisreaction
usingprecatalyst15after540min. Aswasthecasewithprecatalysts13and14,the1-octenemetathesis
reactionusingprecatalyst15showedrelativelylowsubstrateconversion,PMP,IPandSMPformation
andK ,TONandTOFafter540min. Generally,itshowedlowactivity.
In
Table5.Summaryofthecatalyticactivityofprecatalyst15forthemetathesisof1-octeneafter540min.
Temp(◦C) Conv.1(%) 1-Octene2 PMPs2 IPs2 SMPs2 S3 KIn4 TON5 TOF6
70 17 83 15.4 0.2 1.3 91 1.82×10−3 1387 4.3×10−2
80 32 68 30.7 0.2 1.4 95 4.46×10−3 2765 8.5×10−2
90 56 44 53.4 0.2 2.1 96 7.74×10−3 4802 14.8×10−2
100 75 25 71.9 0.3 2.5 96 12.83×10−3 6469 20.0×10−2
110 97 3 91.8 0.3 4.5 95 19.01×10−3 8264 25.5×10−2
1 Conversion;2 yieldinmol%andRu/1-octenemolarratio1:9000;3 selectivityinpercenttowardPMPs;
4initiationconstantinmol/s;5TON=(n%PMPs×[nOct]/[nRu])/100;6TOF=TON/s.
At 70 ◦C, the reaction did not reach equilibrium after 2100 min, resulting in 47% 1-octene
conversion to 45% PMPs, 1.7% SMPs, 0.2% IPs and 96% selectivity, 4032 TON, 3.29 × 10−2 TOF.
Increasingthetemperatureto80◦Craisedthe1-octeneconversionto32%,resultingin53.4%PMPs,
1.4% SMPs, 0.2% IP and 95% selectivity, 2765 TON, 4.46 × 10−3 K and 8.5 × 10−2 TOF after 540
In
min. ThesubstrateconversionandPMPformation,K ,TONandTOFaredoubled,whiletheSMP
In
formationshowedamoderateincrease,andIPformationdecreased. Thereactiondidnotequilibrate
after2100min,resultingin84%1-octeneconversionto81%PMPs,2.9%SMPs,0.1%IPs,97%selectivity,
7321TONand5.8×10−2TOF.Raisingthetemperatureto90◦Cconverted56%of1-octeneto53.4%
PMPs, 2.1% SMPs, 0.2% IPs and 96% selectivity, 4802 TON, 7.74 × 10−3 K and 14.8 × 10−2 TOF
In
after450min. ExceptforIPformationandselectivity,asubstantialincreasewasobservedinallofthe
factorsuponincreasingthetemperatureby10◦C.
Catalysts 2017, 7, 22 9 of 21
Table 5. Summary of the catalytic activity of precatalyst 15 for the metathesis of 1‐octene after
540 min.
Temp Conv. 1
(°C) (%) 1‐Octene 2 PMPs 2 IPs 2 SMPs 2 S 3 KIn 4 TON 5 TOF 6
70 17 83 15.4 0.2 1.3 91 1.82 × 10−3 1387 4.3 × 10−2
80 32 68 30.7 0.2 1.4 95 4.46 × 10−3 2765 8.5 × 10−2
90 56 44 53.4 0.2 2.1 96 7.74 × 10−3 4802 14.8 × 10−2
100 75 25 71.9 0.3 2.5 96 12.83 × 10−3 6469 20.0 × 10−2
110 97 3 91.8 0.3 4.5 95 19.01 × 10−3 8264 25.5 × 10−2
Catalysts2011 C7,o7n,v2e2rsion; 2 yield in mol % and Ru/1‐octene molar ratio 1:9000; 3 selectivity in percent toward PMPs; 9of21
4 initiation constant in mol/s; 5 TON = (n%PMPs × [nOct]/[nRu])/100; 6 TOF = TON/s.
100 100
80 80
ne (%) 60 s (%) 60
e P
Oct 40 PM 40
1-
20 20
0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Reaction time (min) Reaction time (min)
(a) (b)
10 2.5
8 2.0
Ps (%) 6 s (%) 1.5
M P
S 4 I 1.0
2 0.5
0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Reaction time (min) Reaction time (min)
(c) (d)
Figure 3. The influence of temperature on the reaction composition during metathesis of 1‐octene
Figure3. Theinfluenceoftemperatureonthereactioncompositionduringmetathesisof1-octene
using the ruthenium alkylidene precatalyst 15: (a) conversion of 1‐octene; (b) formation of PMPs;
usingtherutheniumalkylideneprecatalyst15: (a)conversionof1-octene; (b)formationofPMPs;
(c) formation of SMPs; (d) formation of IPs; Ru/1‐octene (1:9000) (●, 70 °C; ■, 80 °C; ▲, 90 °C; ♦, 100 °C;
(c)formationofSMPs;(d)formationofIPs;Ru/1-octene(1:9000)( ,70◦C;(cid:4),80◦C;(cid:78),90◦C;(cid:7),100◦C;
□, 110 °C).
(cid:3),110◦C).
The reaction, however, did not reach equilibrium at 2100 min, where it was stopped, resulting
inT h9e1%re acocntivoenr,sihoonw ofe v1‐eorc,tdenide ntoo t87r%ea cPhMePqsu, 4il.i1b%ri uSMmPast, 02.120%0 ImPsi,n 9,5w%h seerleecittivwitays, s7t8o3p5 pTeOdN,r aensud lt ing
in 916%.2 c×o 1n0v−2e rTsOioFn. Rofel1a-tiovcetleyn heigtoh 8s7u%bstPraMteP cso,n4v.1e%rsioSnM tPos h,i0g.h2 %PMIPPss, 9an5d% SsMelPesc tiisv iotyb,se7r8v3e5d TaOfteNr a nd
6.2 ×210100 −m2inT. OAtF 1.0R0 e°lCa,t i7v5e%ly ofh thigeh 1‐souctbesnter awteasc coonnvveerrtseido nto t7o1.h9%ig PhMPPMs,P 2s.5%an SdMSPMs aPnsd i0s.3o%b IsPesr vweidth after
210096m%in s.elAecttiv10it0y, ◦6C46,97 5T%ONo,f 1t2h.8e3 1×- o10c−t3e KnIen awnads 2c0o.0n ×v 1e0r−t2e TdOtFo a7f1te.r9 %540P mMinP.s T,h2e.5 i%ncrSeMasPe sina 1n‐doct0e.n3e% IPs
conversion to PMPs is significant, while its conversion to SMPs and IPs is relatively small. The TON,
with96%selectivity,6469TON,12.83×10−3K and20.0×10−2TOFafter540min. Theincreasein
KIn and TOF also showed a substantial increasIen. The reaction, however, reached equilibrium after
1-octeneconversiontoPMPsissignificant,whileitsconversiontoSMPsandIPsisrelativelysmall.
780 min with 84% of substrate conversion to 81% PMPs, 3.5% SMPs, 0.3% IPs, 96% selectivity,
TheT72O5N1 T,OKNIn aanndd 1T5O.5F × a1l0s−o2 TshOoFw. Iend spaitseu obfs atalln otfi atlhien vcarreiaastieo.nTsh ine sreuabcsttiroante, choonwveervseior,nr,e PaMchPe, dSMeqPu ailnidb rium
after780minwith84%ofsubstrateconversionto81%PMPs,3.5%SMPs,0.3%IPs,96%selectivity,
7251 TONand15.5×10−2TOF.Inspiteofallofthevariationsinsubstrateconversion,PMP,SMPand
IPformation,theselectivityremainedthesame(96%),whichisaremarkablephenomenon. Asaresult
oftherelativelysmallSMPandIPformation,wewereinterestedtoseetheinfluenceofthereaction
temperatureat110◦Conthecatalyticperformanceof15. AsisshowninTable5andFigure3,97%
ofthe1-octenewasconvertedto91.8%PMPs,4.5%SMPs,0.3%IPswith95%selectivity,8264TON,
19.01×10−3 K and26.0×10−2 TOFafter540min. Thisisaremarkableresult,whichwedidnot
In
seewithanyofthepreviousprecatalystsatthistemperatureafter540min. Inadditiontothis,the
reactionattainedequilibriumafter660minwith97%ofthesubstratebeingconvertedto93%PMPs,
4.3%SMPs,0.2%IPswith95%selectivity,8340TONand21.1×10−2TOF.Itisexcitingtoseenearly
allofthe1-octenebeingconvertedtoPMPs. Itisdifficulttodecidetheoptimumreactiontemperature
forprecatalyst15asaresultofsimilarselectivitiestowardsPMPsatthehightemperatures. Therefore,
weprefertoconsiderboth100and110◦Casoptimumtemperaturesforprecatalyst15.
Catalysts2017,7,22 10of21
2.3.2. ComparisonofCatalyticActivityandSelectivity
Table6andFigure4showasummaryandcomparisonrespectivelyofthecatalyticactivitiesof
precatalysts2–4and13–15in1-octenemetathesisat80◦Cafter540min. Wechoose80◦Cbecausethe
optimumtemperatureforprecatalyst4,ourreferenceprecatalyst,is80◦C,asitwillhelpuscompare
theinfluenceofthesubstituentsonthecatalyticactivitiesofprecatalysts13–15. Wealsoincludedthe
firstandsecondgenerationGrubbsprecatalysts2and3forthesakeofcomparingtheimprovementin
termsofthecatalystactivityathightemperatures. Aswehavementionedearlier,ourmainobjectiveis
tosynthesizeacatalystthatwouldperformbetterathightemperaturessothatitcouldbeconsidered
forindustrialapplications.
Table6. Summaryofthecatalyticactivityofdifferentprecatalystsforthemetathesisof1-octeneat
540minand80◦C.
Catalyst Conv.1(%) 1-octene2 PMPs2 IPs2 SMPs2 S3 KIn4 TON5 TOF6
2 83.2 16.8 58.0 25.2 0.5 69 9.36×10−3 5179 16.0×10−2
3 96 4.0 67.0 3.0 26.0 70 7.91×10−3 6029 18.6×10−2
4 77 23.2 74.0 2.7 0.2 96 10.66×10−3 6643 20.5×10−2
13 46 53.7 44.0 1.9 0.1 96 7.40×10−3 3982 12.3×10−2
14 59 40.8 57.0 2.3 0.2 96 9.22×10−3 5097 15.7×10−2
15 32 68.0 31.0 1.4 0.2 95 4.46×10−3 2765 8.5×10−2
1 Conversion;2 yieldinmol%andRu/1-octenemolarratio1:9000;3 selectivityinpercenttowardPMPs;
4initiationconstantinmol/s;5TON=(n%PMPs×[nOct]/[nRu])/100;6TOF=TON/s.
Catalysts 2017, 7, 22 11 of 21
100 100
80 80
ne (%) 60 s (%) 60
e P
Oct 40 PM 40
1-
20 20
0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Reaction time (min) Reaction time (min)
(a) (b)
10 2.5
8 2.0
Ps (%) 6 s (%) 1.5
M P
S 4 I 1.0
2 0.5
0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Reaction time (min) Reaction time (min)
(c) (d)
Figure 4. Comparison of catalytic activity, selectivity and stability of precatalysts 4 and 13–15 during
Figure4.Comparisonofcatalyticactivity,selectivityandstabilityofprecatalysts4and13–15during
the course of metathesis of 1‐octene: (a) conversion of 1‐octene; (b) formation of PMPs; (c) formation
thecourseofmetathesisof1-octene:(a)conversionof1-octene;(b)formationofPMPs;(c)formationof
of SMPs; (d) formation of IPs; Ru/1‐octene (1:9000), 80 °C (●, 4; ■, 13; ▲, 14; ♦, 15).
SMPs;(d)formationofIPs;Ru/1-octene(1:9000),80◦C( ,4;(cid:4),13;(cid:78),14;(cid:7),15).
The lowest catalytic activity is observed for 13 in every aspect (except selectivity), and the highest
selectivity is observed for 2. The highest substrate conversion and PMPs formation is observed for 15
(at 110 °C), which is followed by 3. Precatalyst 3, however, resulted in relatively high TON and TOF
followed by 15 (at 110 °C). Precatalysts 15 (at 100 °C) and 4 showed similar activities, whereas
precatalyst 14 showed better activity than these two. Generally, precatalysts 14 and 15 showed better
activity than the rest of the precatalysts at high temperatures (100 and 110 °C). Therefore, we
improved the optimum temperature of the very stable precatalyst 4 to temperatures as high as
100 and 110 °C, sustaining high catalyst activity and selectivity by introducing chloro and methoxy
groups on the p‐position of one of the α‐phenyl groups in the pyridinyl alcoholato ligand.
Table 7. Summary of the catalytic activity of different precatalysts for the metathesis of 1‐octene after
420 min and at optimum reaction temperatures.
Temp
Catalyst 1‐Octene 2 PMPs 2 IPs 2 SMPs 2 S 3 KIn 4 TON 5 TOF 6
(°C)
2 35 7 58.5 40.8 0.4 0.3 98 0.12 × 10−4 4136 16.4 × 10−2
3 60 7 14.8 81.6 0.0 3.6 96 1.89 × 10−4 8881 35.2 × 10−2
4 80 28.8 68.0 0.3 2.9 96 9.60 × 10−3 6120 24.3 × 10−2
13 80 65.5 34.0 0.2 1.3 96 5.32 × 10−3 3063 12.2 × 10−2
14 100 21.2 76.0 0.3 2.5 97 13.54 × 10−3 6825 27.1 × 10−2
15 100 30.2 67.0 0.3 2.5 96 11.57 × 10−3 6005 23.8 × 10−2
15 110 4.2 91.0 0.3 4.5 95 17.12 × 10−3 8160 32.4 × 10−2
Description:Research Focus Area for Chemical Resource Beneficiation, Catalysis and Synthesis Research Group,. North-West University, Hoffmann Street, 2531 Potchefstroom, South Africa;
[email protected] (T.T.T.);.
[email protected] (J.I.d.T.);
[email protected] (C.G.C.E.v.S.);