Table Of ContentSubstructure and Gas Clumping in
the Outskirts of Abell 133
by
Gandhali Joshi
A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Science
in
Physics
Waterloo, Ontario, Canada, 2013
(cid:13)c Gandhali Joshi 2013
I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.
I understand that my thesis may be made electronically available to the public.
ii
Abstract
Galaxy clusters are powerful tools for studying various astrophysical principles. Gas ac-
creting onto the cluster is heated to 107−108 K through adiabatic compression and shocks,
making clusters highly luminous in X-ray imaging. Measurements of the gas density and
temperature profiles can be used to calculate the gas mass fraction f , which is expected
gas
to closely match the cosmic baryon fraction Ω /Ω . Recent observations have found en-
b m
tropy profiles in cluster outskirts that are shallower than predicted and values of f that
gas
are higher than the Universal baryon fraction inferred from the Cosmic Microwave Back-
ground (CMB). Abell 133 was an ideal candidate for studying this phenomenon, since it
had recently been observed in a wide (R ≈ 30(cid:48)) Chandra mosaic with an exposure time of
∼ 2 Ms. The X-ray imaging was combined with existing optical imaging from the Canada-
France-Hawaii Telescope (CFHT) and spectroscopy obtained from the Magellan telescope,
to search for any possible gas clumps and to study their properties.
Thephotometricanalysisyieldedover3200redsequencegalaxiestoadepthofr’= 22.5,
which were used to create a Gaussian smoothed intensity map and a significance map of
the cluster (compared to CFHT Legacy Survey data). About 6 significant overdensities
were detected in the significance map, although these did not fully correspond to contours
obtained from the X-ray image. Spectroscopy obtained on the cluster yielded ∼ 700 secure
redshifts, of which about 180 were cluster members. This included data from the NOAO
Fundamental Plane Survey (NFPS) and the 6 Degree Field Galaxy Survey (6dFGS). We
found a cluster redshift of z = 0.0561±0.0002 and a velocity dispersion of σ = 743±43
km/s. The dynamical analysis gave a virial radius of r = 1.44 ± 0.03 Mpc and a virial
v
mass of M = (5.9 ± 0.8) × 1014M . We also found values of R = 1.21 ± 0.07 Mpc
v (cid:12) 500
and M = (5.3 ± 0.9) × 1014M for γ = 1/3 and R = 0.99 ± 0.05 Mpc and M =
500 (cid:12) 500 500
(2.9±0.5)×1014M for γ = 1/2, where γ is a parameter related to the assumed density
(cid:12)
profile and the velocity anisotropy.
About 30 overdensities with a radius R ≥ 30” were detected as gas clumps on the
c
X-ray image. The galaxy distribution in these clumps was analyzed, both for the stacked
signal as well as the individual clumps, in ten parallel colour-magnitude bands to find
any significant red sequences associated with them. Most of these clumps appeared to be
background systems, some consisting of 1-2 galaxies, others being small groups or clusters.
Only 2-3 clumps appeared to be associated with the cluster itself. This suggests that the
cluster density profile is actually quite smooth, which may not agree with recent numerical
simulations. Further studies are required to determine if the cluster density distribution is
consistent with what is predicted and the nature of the background systems.
iii
Acknowledgements
This thesis is based on observations obtained with MegaPrime/MegaCam, a joint project
of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is
operated by the National Research Council (NRC) of Canada, the Institut National des
Science de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France,
and the University of Hawaii. This work is based in part on data products produced at the
Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy
Survey, a collaborative project of NRC and CNRS.
Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Partic-
ipating Institutions, the National Science Foundation, and the U.S. Department of Energy
Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed
by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-
III Collaboration including the University of Arizona, the Brazilian Participation Group,
Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University,
University of Florida, the French Participation Group, the German Participation Group,
Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre
Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National
Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterres-
trial Physics, New Mexico State University, New York University, Ohio State University,
Pennsylvania State University, University of Portsmouth, Princeton University, the Span-
ish Participation Group, University of Tokyo, University of Utah, Vanderbilt University,
University of Virginia, University of Washington, and Yale University.
I owe a huge debt of gratitude to my supervisors, Dr. Michael Balogh and Dr. Brian
McNamara, for taking a risk and giving me the opportunity to work on this project, as well
as for their patience and guidance throughout my research and while writing this thesis. I
would also like to thank Dr. John Mulchaey and Dr. Alexey Vikhlinin for their input and
help with the analysis.
Finally, I want to thank my family for their constant love, support and encouragement;
without them, this work would not have been possible.
iv
Table of Contents
List of Tables viii
List of Figures ix
1 Introduction 1
1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 FRW cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Clusters as tests of cosmology . . . . . . . . . . . . . . . . . . . . . 6
1.2 Detection and observations of galaxy clusters . . . . . . . . . . . . . . . . . 7
1.2.1 Optical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 X-ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Sunyaev Zel’dovich effect . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Motivation for present work . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Outskirts of clusters . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Missing baryon problem . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Abell 133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Photometric Study 17
2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.1 Optical imaging of Abell 133 . . . . . . . . . . . . . . . . . . . . . . 17
v
2.1.2 CFHTLS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 SDSS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Identifying cluster members . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Removal of stars from catalogue . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Red sequence analysis . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Cluster intensity profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Intensity mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Measuring significance . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Spectroscopic Study 32
3.1 Observations and data reduction . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.1 Optical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Mask design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.4 Data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.5 External data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Completeness analysis . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Cluster member selection . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Red sequence analysis . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.4 Dynamical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4 Comparison with X-ray overdensities 52
4.1 Stacked clump statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.1 Significance of galaxy counts . . . . . . . . . . . . . . . . . . . . . . 55
4.1.2 Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Analysis of individual clumps . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.1 Dominant CMR band for individual clumps . . . . . . . . . . . . . 62
4.2.2 Final results for individual clumps . . . . . . . . . . . . . . . . . . . 69
vi
5 Conclusions 77
References 81
vii
List of Tables
2.1 Model parameters for intensity profile fits . . . . . . . . . . . . . . . . . . . 25
3.1 Criteria for selecting spectroscopy targets . . . . . . . . . . . . . . . . . . . 33
3.2 Summary of spectroscopy observations . . . . . . . . . . . . . . . . . . . . 35
3.3 Summary of results from individual masks . . . . . . . . . . . . . . . . . . 37
4.1 Results of colour-magnitude relation probability analysis for stacked clump
signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Results of concentration analysis for stacked clump signal . . . . . . . . . . 61
4.3 Propertiesofmaximumsignificancecolour-magnituderelationforindividual
clumps within 2R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
c
4.4 Propertiesofmaximumsignificancecolour-magnituderelationforindividual
clumps within 1R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
c
4.5 Effect of trials factor on significances . . . . . . . . . . . . . . . . . . . . . 68
viii
List of Figures
1.1 Density, entropy, pressure and f profile for Perseus cluster by Simionescu
gas
et al. [2011] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Profile of clumping factor from cluster simulations by Nagai and Lau [2011] 14
2.1 Chandra X-ray image of Abell 133 . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Half-light radius vs. r’-magnitude . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Colour-magnitude diagram of all galaxies in image . . . . . . . . . . . . . . 21
2.4 Cluster intensity profile with density model fits . . . . . . . . . . . . . . . 25
2.5 Gaussian smoothed intensity map . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Significance map of Gaussian blurred intensity . . . . . . . . . . . . . . . . 28
2.7 Redshift selection using additional colours from SDSS for field galaxies . . 30
3.1 Mask locations for spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Comparison of redshifts with NFPS and 6dFGS data sets . . . . . . . . . . 39
3.3 Magnitude completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Fraction of spectra that yielded secure redshifts. . . . . . . . . . . . . . . . 41
3.5 Spatial completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Distribution of redshifts detected . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Positions of galaxies with secure spectra . . . . . . . . . . . . . . . . . . . 45
3.8 Velocity in cluster reference frame vs. cluster-centric radius . . . . . . . . . 46
3.9 Weighted luminosity function . . . . . . . . . . . . . . . . . . . . . . . . . 47
ix
3.10 Colour magnitude diagram for all galaxies along with spectroscopy results . 49
3.11 Positions of cluster members and red-sequence candidates . . . . . . . . . . 50
4.1 X-ray image of Abell 133 with gas clumps . . . . . . . . . . . . . . . . . . 53
4.2 Regions of gas clumping overlaid on optical image . . . . . . . . . . . . . . 54
4.3 Stacked colour magnitude diagram of galaxies within clumps . . . . . . . . 56
4.4 Spatial distribution of galaxies within clumps . . . . . . . . . . . . . . . . 59
4.4 Spatial distribution of galaxies within clumps . . . . . . . . . . . . . . . . 60
4.5 Significance of galaxy counts in CMR bands for individual clumps . . . . . 63
4.6 Colour-magnitude diagrams for individual clumps . . . . . . . . . . . . . . 71
4.6 Colour-magnitude diagrams for individual clumps . . . . . . . . . . . . . . 72
4.6 Colour-magnitude diagrams for individual clumps . . . . . . . . . . . . . . 73
4.6 Colour-magnitude diagrams for individual clumps . . . . . . . . . . . . . . 74
4.6 Colour-magnitude diagrams for individual clumps . . . . . . . . . . . . . . 75
4.7 Optical images of probable clustering of galaxies . . . . . . . . . . . . . . . 76
x
Description:Gandhali Joshi. A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of. Master of Science in. Physics.