Table Of ContentGeometry and Computing
SeriesEditors
HerbertEdelsbrunner
LeifKobbelt
KonradPolthier
EditorialAdvisoryBoard
Jean-DanielBoissonnat
GunnarCarlsson
BernardChazelle
Xiao-ShanGao
CraigGotsman
LeoGuibas
Myung-SooKim
TakaoNishizeki
HelmutPottmann
RobertoScopigno
Hans-PeterSeidel
SteveSmale
PeterSchro¨der
DietrichStoyan
•
Jo¨rg Peters Ulrich Reif
Subdivision Surfaces
With 52 Figures
123
Jo¨rgPeters UlrichReif
UniversityofFlorida TUDarmstadt
Dept.Computer&InformationScience FBMathematik
GainesvilleFL32611-6120 Schloßgartenstr.7
USA 64289Darmstadt
[email protected]fl.edu Germany
[email protected]
ISBN978-3-540-76405-2 e-ISBN978-3-540-76406-9
SpringerSeriesinGeometryandComputing
LibraryofCongressControlNumber:2008922290
MathematicsSubjectsClassification(2000):65D17,65D07,53A05,68U05
(cid:1)c 2008Springer-VerlagBerlinHeidelberg
Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis
concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,
reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication
orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,
1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations
areliabletoprosecutionundertheGermanCopyrightLaw.
Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot
imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective
lawsandregulationsandthereforefreeforgeneraluse.
Coverdesign:deblik,Berlin
Printedonacid-freepaper
9 8 7 6 5 4 3 2 1
springer.com
for
Anousha
Daniel
Julian
Kavina
Tobias
Preface
AkintoB-splines,theappealofsubdivisionsurfacesreachesacrossdisciplinesfrom
mathematics to computer science and engineering. In particular, subdivision sur-
faces have had a dramatic impact on computer graphics and animation over the
last 10 years: the results of a development that started three decades ago can be
viewed today at movie theaters, where feature length movies cast synthetic char-
acters ‘skinned’ with subdivision surfaces. Correspondingly, there is a rich, ever-
growingliteratureonitsfundamentalsandapplications.
Yet,aswitheveryvibrantnewfield,thelackofauniformnotationandstandard
analysistoolshasaddedunnecessary,attimesinconsistent,repetitionthatobscures
thesimplicityandbeautyoftheunderlyingstructures.Onegoalinwritingthisbook
istohelpshortenintroductorysectionsandsimplifyproofsbyproposingastandard
setofconceptsandnotation.
Whenwestartedwritingthisbookin2001,wefeltthatthefieldhadsufficiently
settled for standardization. After all, Cavaretta, Dahmen, and Micchelli’s mono-
graph [CDM91] had appeared 10 years earlier and we could build on the habilita-
tionofthesecondauthoraswellasanumberofjointpapers.Butitwasonlyinthe
processofwritingandseeingtheissuesinconjunction,thatstructuresandnotation
becameclearer.Infact,thelengthofthebookrepeatedlyincreasedanddecreased,
askeyconceptsandstructuresemerged.
Chapter2 ,forexample,wasalateaddition,asitbecameclearthatthedifferen-
/15
tial geometry for singular parameterizations, of continuity, smoothness, curvature,
and injectivity, must be established upfront and in generality to simplify the ex-
positionandlaterproofs.Bycontrast,thekeydefinitionofsubdivisionsurfacesas
splineswithsingularities,inChap.3 ,wasapartofthefoundationsfromtheoutset.
/39
This point of view implies a radical departure from any focus on control nets and
insteadplacesthemainemphasisonnestedsurfacerings,asexplainedinChap.4 .
/57
Carefulexaminationofexistingproofsledtotheexplicitformulationofanumber
of assumptions, in Chap.5 , that must hold when discussing subdivision surfaces
/83
ingenerality.Conversely,placingthesekeyassumptionsupfront,shortenedthepre-
sentationconsiderably.Therefore,thestandardexamplesofsubdivisionalgorithms
vii
viii Preface
reviewed in Chap.6 are presented with a new, shorter and simpler analysis than
/109
in earlier publications. Chapters 7 and 8 were triggered by very recent, new
/125 /157
insights and results and partly contain unpublished material. The suitability of the
majorknownsubdivisionalgorithmsforengineeringdesignwasattheheartofthe
investigationsintotheshapeofsubdivisionsurfacesinChap.7 .Theshortcomings
/125
of the standard subdivision algorithms discovered inthe process forced arenewed
search for an approach to subdivision capable of meeting shape and higher-order
continuity requirements. Guided subdivision was devised in response. The second
partofChap.7 recaststhisclassofsubdivisionalgorithmsinamoreabstractform
/125
that may be used as a prototype for a number of new curvature continuous subdi-
vision algorithms. The first part of Chap.8 received a renewed impetus from a
/157
recentstreamofpublicationsaimedatpredictingthedistanceofasubdivisionsur-
face from their geometric control structures after some m refinement steps. The
introduction of proxy surfaces and the distance to the corresponding subdivision
surface subsumes this set of questions and provides a framework for algorithm-
specificoptimalestimates.ThesecondpartofChap.8 grewoutofthesurprising
/157
observationthattheCatmull–Clarksubdivisioncanrepresentthesamesphere-like
objectstartingfromanymemberofawholefamilyofinitialcontrolconfigurations.
The final chapter, Chap.9 , shows that a large variety of subdivision algorithms
/175
is fully covered by the exposition in the book. But it also outlines the limits of
ourcurrentknowledgeandopensawindowtothefascinatingformsofsubdivision
currently beyond the canonical theory and to the many approaches still awaiting
discovery.
As a monograph, the book is primarily targeted at the subdivision community,
including not only researchers in academia, but also practitioners in industry with
aninterestinthetheoreticalfoundationsoftheirtools.Itisnotintendedasacourse
textbookandcontainsnoexercises,butanumberofworkedoutexamples.However,
weaimedatanexpositionthatisasself-containedaspossible,requiring,wethink,
onlybasicknowledgeoflinearalgebra,analysisorelementarydifferentialgeometry.
The book should therefore allow for independent reading by graduate students in
mathematics,computerscience,andengineeringlookingforadeeperunderstanding
ofsubdivisionsurfacesorstartingresearchinthefield.
Two valuable sources that complement the formal analysis of this book are the
SIGGRAPH course notes [ZS00] compiled by Schro¨der and Zorin, and the book
‘SubdivisionMethodsforGeometricdesign’byWarrenandWeimer[WW02].The
notes offer the graphics practitioner a quick introduction to algorithms and their
implementation and the book covers a variety of interesting aspects outside our
focus; for example, a connection to fractals, details of the analysis of univariate
algorithms,variationalalgorithmsbasedondifferentialoperatorsandobservations
thatcansimplifyimplementation.
Weaimedatunifyingthepresentation,placingforexamplebibliographicalnotes
attheendofeachcorechaptertopointoutrelevantandoriginalreferences.Inaddi-
tiontothese,weincludedalargenumberofpublicationsonsubdivisionsurfacesin
Preface ix
thereferencesection.Ofcourse,giventheongoinggrowthofthefield,thesenotes
cannotclaimcompleteness.Wethereforereservedtheinternetsite
www.subdivision-surface.org
for future pointers and additions to the literature and theme of the book, and, just
possibly,tomitigateanydamageofinsufficientproofreadingonourpart.
Itisourpleasuretothankatthispointourcolleaguesandstudentsfortheirsup-
port: Jianhua Fan, Ingo Ginkel, Jan Hakenberg, Rene´ Hartmann, Ke¸stutis
Karcˇiauskas,MinhoKim,AshishMyles,TianyunLisaNi,AndyLeJengShiue,
GeorgUmlauf,andXiaobinWuwhoworkedwithusonsubdivisionsurfacesover
many years. JanHakenberg,Rene´Hartmann,MalcolmSabin,NeilStewart, and
GeorgUmlaufhelpedtoenhancethemanuscriptbycarefulproof-readingandpro-
viding constructive feedback. MalcolmSabinand GeorgUmlaufadded valuable
materialforthebibliographicalnotes.NiraDynandMalcolmSabinwillinglycon-
tributed two sections to the introductory chapter, and it was again Malcolm Sabin
whosharedhisextensivelistofreferencesonsubdivisionwhichformedthestarting
pointofourbibliography.ChandrajitBajajgenerouslyhostedaretreatoftheauthors
thatbroughtaboutthefinalstructureofthebook.Manythankstoyouall!Thework
wassupportedbytheNSFgrantsCCF-0430891andDMI-0400214.
Ourfinalthanksarereservedforourfamiliesfortheirsupportandtheirpatience.
Youkeptusinspired.
Contents
1 IntroductionandOverview...................................... 1
1.1 RefinedPolyhedra.......................................... 1
1.2 ControlNets............................................... 2
1.3 SplineswithSingularities.................................... 4
1.4 FocusandScope ........................................... 6
1.5 Overview ................................................. 7
1.6 Notation .................................................. 7
1.7 AnalysisintheShift-InvariantSetting ......................... 8
1.8 HistoricalNotesonSubdivisiononIrregularMeshes............. 11
2 GeometryNearSingularities .................................... 15
2.1 DotandCrossProducts ..................................... 16
2.2 RegularSurfaces ........................................... 17
2.3 SurfaceswithaSingularPoint................................ 23
2.4 CriteriaforInjectivity....................................... 31
3 GeneralizedSplines ............................................ 39
3.1 AnAlternativeViewofSplineCurves ......................... 40
3.2 ContinuousBivariateSplines................................. 41
3.3 Ck-Splines................................................ 44
3.4 Ck-Splines................................................ 47
r
3.5 ABicubicIllustration ....................................... 53
4 SubdivisionSurfaces ........................................... 57
4.1 Refinability ............................................... 58
4.2 SegmentsandRings ........................................ 59
4.3 SplinesinFinite-DimensionalSubspaces....................... 65
4.4 SubdivisionAlgorithms ..................................... 67
4.5 AsymptoticExpansionofSequences .......................... 71
4.6 JordanDecomposition ...................................... 72
4.7 TheSubdivisionMatrix ..................................... 75
xi
xii Contents
5 Ck-SubdivisionAlgorithms ..................................... 83
1
5.1 GenericInitialData......................................... 84
5.2 StandardAlgorithms........................................ 84
5.3 GeneralAlgorithms......................................... 89
5.4 ShiftInvariantAlgorithms ................................... 95
5.5 SymmetricAlgorithms ......................................103
6 CaseStudiesofCk-SubdivisionAlgorithms .......................109
1
6.1 Catmull–ClarkAlgorithmandVariants.........................109
6.2 Doo–SabinAlgorithmandVariants............................116
6.3 SimplestSubdivision .......................................120
7 ShapeAnalysisandCk-Algorithms ..............................125
2
7.1 HigherOrderAsymptoticExpansions .........................126
7.2 ShapeAssessment..........................................134
7.3 ConditionsforCk-Algorithms................................140
2
7.4 AFrameworkforCk-Algorithms .............................145
2
7.5 GuidedSubdivision.........................................149
8 ApproximationandLinearIndependence.........................157
8.1 ProxySplines..............................................157
8.2 LocalandGlobalLinearIndependence ........................169
9 Conclusion ....................................................175
9.1 FunctionSpaces............................................176
9.2 Recursion .................................................177
9.3 CombinatorialStructure .....................................178
References.........................................................183
Index .............................................................199
Description:Since their first appearance in 1974, subdivision algorithms for generating surfaces of arbitrary topology have gained widespread popularity in computer graphics and are being evaluated in engineering applications. This development was complemented by ongoing efforts to develop appropriate mathemati