Table Of ContentEssaysinEconomicTheory: StrategicCommunicationandInformationDesign
AndrewKosenko
Submittedinpartialfulfillmentofthe
requirementsforthedegreeof
DoctorofPhilosophy
intheGraduateSchoolofArtsandSciences
COLUMBIAUNIVERSITY
2018
(cid:13)c 2018
AndrewKosenko
Allrightsreserved
ABSTRACT
EssaysinEconomicTheory: StrategicCommunicationandInformationDesign
AndrewKosenko
Thisdissertationconsistsoffouressaysineconomictheory. Allofthemfallun-
der the umbrella of economics of information; we study various models of game-
theoretic interaction between players who are communicating with others, and
have (or are able to produce) information of some sort. There is a large emphasis
ontheinterplayofinformation,incentivesandbeliefs.
In the first chapter we study a model of communication and persuasion be-
tween a sender who is privately informed and has state independent preferences,
andareceiverwhohaspreferencesthatdependontheunknownstate. Inamodel
with two states of the world, over the interesting range of parameters, the equi-
libria can be pooling or separating, but a particular novel refinement forces the
pooling to be on the most informative information structure in interesting cases.
We also study two extensions - a model with more information structures as well
asamodelwherethestateoftheworldisnon-dichotomous,andshowthatanalo-
gousresultsemerge.
In the second chapter, which is coauthored with Joseph E. Stiglitz and Jungy-
oll Yun, we study the Rothschild-Stiglitz model of competitive insurance markets
with endogenous information disclosure by both firms and consumers. We show
thatanequilibriumalwaysexists,(evenwithoutthesinglecrossingproperty),and
characterize the unique equilibrium allocation. With two types of consumers the
outcomeisparticularlysimple,consistingofapoolingallocationwhichmaximizes
the well-being of the low risk individual (along the zero profit pooling line) plus
a supplemental (undisclosed and nonexclusive) contract that brings the high risk
individual to full insurance (at his own odds). We also show that this outcome is
extremelyrobustandParetoefficient.
Inthethirdchapterwestudyagameofstrategicinformationdesignbetweena
sender, who chooses state-dependent information structures, a mediator who can
then garble the signals generated from these structures, and a receiver who takes
an action after observing the signal generated by the first two players. Among
the results is a novel (and complete, in a special case) characterization of the set
of posterior beliefs that are achievable given a fixed garbling. We characterize
a simple sufficient condition for the unique equilibrium to be uninformative, and
providecomparativestaticswithregardtothemediator’spreferences,thenumber
ofmediators,anddifferentinformationalarrangements.
In the fourth chapter we study a novel equilibrium refinement - belief-payoff
monotonicity. Weintroduceadefinition,arguethatitisreasonablesinceitcaptures
an attractive intuition, relate the refinement to others in the literature and study
someoftheproperties.
Contents
ListofFigures iii
Acknowledgements vi
Dedication ix
1 BayesianPersuasionwithPrivateInformation 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 RelationshiptoExistingLiterature . . . . . . . . . . . . . . . . . . . . 6
1.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 AGeneralModel: Non-dichotomousStates. . . . . . . . . . . . . . . . 43
1.5 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2 RevisitingRothschild-Stiglitz 62
2.1 TheModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.2 Rothschild-StiglitzwithSecretContracts . . . . . . . . . . . . . . . . . 69
2.3 ParetoEfficiencywithUndisclosedContracts . . . . . . . . . . . . . . 73
2.4 DefinitionofMarketEquilibrium . . . . . . . . . . . . . . . . . . . . . 77
2.5 EquilibriumAllocations . . . . . . . . . . . . . . . . . . . . . . . . . . 83
i
2.6 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.7 GeneralityoftheResult . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.8 Extensions: Non-uniquenessofEquilibrium . . . . . . . . . . . . . . . 90
2.9 ExtensionstoCaseswithManyTypes . . . . . . . . . . . . . . . . . . 92
2.10 PreviousLiterature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.11 TheNo-disclosureLimitedInformationPriceEquilibria . . . . . . . . 97
2.12 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.13 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3 MediatedPersuasion: FirstSteps 115
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.3 BinaryModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.4 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.5 AuxiliaryResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4 ThingsLeftUnsaid: TheBelief-PayoffMonotonicityRefinement 166
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.3 RelationshiptoOtherRefinements . . . . . . . . . . . . . . . . . . . . 174
4.4 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Bibliography 185
ii
List of Figures
Π Π
1.1 Illustrationwithpoolingon ,andthedeviationto . . . . . . . . . . 29
L H
2.1 Breaking the RS separating equilibrium in the presence of undisclosed
contractsathigh-riskodds. . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.2 Sustaininganequilibriuminthepresenceofacream-skimmingdeviant
contractDin z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3 Pareto-efficientallocations((A∗,C∗),(A(cid:48),C(cid:48)))andtheequilibriumallo-
cation (A∗,C∗). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.4 Equilibriumwithoutsingle-crossing. . . . . . . . . . . . . . . . . . . . . . 91
2.5 Equilibrium (A,B,C) with three types, which cannot be broken by D
as individuals of higher-risk type supplement it by additional pooling
insurance(alongthearrow)withoutbeingdisclosedtothedeviantfirm.
P denotestheaverageprobabilityofaccidentforthetwohighestrisk
−L
types,whileV indicatesanindifferencecurvefori-risktype(i = H,M,L). 93
i
2.6 Breaking No-Disclosure-Information Price Equilibrium Pe by a fixed-
quantitycontract (α(cid:48),β(cid:48)),where Pe > P(cid:48) > P. . . . . . . . . . . . . . . . . 101
iii
2.7 Nash Equilibrium can be sustained against multiple deviant contracts
(A∗B,G) or (A∗B(cid:48),G) offered at different prices as high-risk individu-
alsalsochooseG(over A∗B)oras(A∗B(cid:48),G)yieldslossesforthedeviant
firm(whileinducingself-selection). . . . . . . . . . . . . . . . . . . . . . . 112
3.1 IllustrationoftheModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.2 EffectofGarblingonBeliefsinaDichotomy. . . . . . . . . . . . . . . . . 125
3.3 AnExample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.4 ComparingtheFeasibleSetsofPosteriors. . . . . . . . . . . . . . . . . . . 141
3.5 IncreasingNoiseShrinkstheSetofFeasiblePosteriors. . . . . . . . . . . 142
3.6 TracingtheOuterLimitof F(M,π): FirstBoundary. . . . . . . . . . . . . 144
3.7 TracingtheOuterLimitof F(M,π): SecondBoundary. . . . . . . . . . . . 145
3.8 TracingtheOuterLimitof F(M,π): ThirdBoundary. . . . . . . . . . . . 146
3.9 TracingtheOuterLimitof F(M,π): FourthBoundary. . . . . . . . . . . . 147
3.10 F(M,π): anIllustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.11 KeyFeaturesoftheFeasibleSet. . . . . . . . . . . . . . . . . . . . . . . . . 149
3.12 Blackwell’sOrderImpliesSetInclusionforFeasibleSets. . . . . . . . . . 153
3.13 FurtherIllustrationofSetInclusion. . . . . . . . . . . . . . . . . . . . . . 154
3.14 UnrankedFeasibleSets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.15 GoingBeyondtheDichotomy: ThreeSignals. . . . . . . . . . . . . . . . 156
3.16 ASimpleNon-trivialExample. . . . . . . . . . . . . . . . . . . . . . . . . 157
4.1 ICandBPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.2 D1andBPMmakethesameselection. . . . . . . . . . . . . . . . . . . . . 177
iv
4.3 NWBRandBPMmakethesameselection. . . . . . . . . . . . . . . . . . . 178
4.4 D1andBPMmakedifferentselections. . . . . . . . . . . . . . . . . . . . . 178
4.5 D1vs. BPM:whichismoreconvincing? . . . . . . . . . . . . . . . . . . . 180
4.6 D1doesnotapply,BPMdoes. . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.7 Abestiaryofrefinementconcepts. . . . . . . . . . . . . . . . . . . . . . . 181
v
Acknowledgements
It is with a profound sense of gratitude and humility that I write these words. I
feelthatmydebttothepeoplewhomadethejourneypossibleisgreaterthanthat
ofmostotherstudents.
There is one person I want to thank before and above all others - my advisor,
Navin Kartik. He has been an exceptional role model even before becoming my
advisor (in fact, before I even started the program), and will always remain so. It
is indeed rare that such a razor-sharp wit should be combined with deep under-
standing, and wide knowledge with a warm personality and wisdom. He pushed
metobecomemybest,supportedmeinsomanyways,farbeyondanyobligation,
andbelievedinmeevenwhenIdidn’tbelieveinmyself.
IwouldalsoliketothankandnotemyprofounddebttoJosephStiglitz. Work-
ingwithJoehasbeenaonce-in-a-lifetimeprivilege. Hehasbeenincrediblygener-
ous with his time, a great mentor and a true joy to work with. He has also effec-
tively functioned as an unofficial advisor and I will forever cherish the experience
of discussing economic ideas with him as the sun set on the Hudson River. Joe
hasalwaysbeenawellspringofideascombinedwithaprofoundethicalcompass,
withunparalleledpublicspiritandanexemplaryworkethic.
vi
Description:Essays in Economic Theory: Strategic Communication and Information Design. Andrew Kosenko. Submitted in partial fulfillment of the requirements for the degree of. Doctor of Philosophy in the Graduate School of Arts and Sciences. COLUMBIA UNIVERSITY. 2018