Table Of ContentMathemaWtoircla•d lV olum1e
m>M
sa
•
101
V.M . Tikhomirov
AmericaMna thematiScoalc iety
Mathematical AssociatioofnA merica
MathemaWtoircl• adVl o lu1m e
Storiaebso ut
Maxima
andM inima
V.M . Tikhomirov
Transflraottmeh de Rubsy sian
Abe Shenitzer
AmericMaant hematSioccaile ty
MathematAiscsaolc iaotfiA omne rica
B.M .T I1XOMJ1POB
PACCKAlhl
0 MAKCHMYMAX
H MHHHMYMAX
<<HAYKA». MOCKB1A9.S 6
Abe
Translaftreodm tRhues sibayn Shenitzer
1991 OOA07.
Matlu!SnuwhtjiCeclcvat l l'ifuaPrtiimoarny.
OOA300.0 A350,1 -014.6 -01. 49-01.4 94199-90 3.
LibraorfCy o ngrCeas!>t alo-giinn-gPublDiactaat ion
TikhomirVolv,,t diMm i(rV ladiMmiirk hailovich), 1934-
Storidebso umta ximadn dm inima/MV Tikhomirov
p em Md(t hemdtiwcoarll dI.S SNI 0 55-942I6 ,)
ISBN0 -8:!18-0165-1
I Maximaan dm inimd2 dCl culouf�V dirdtion3s Mathemdtiocpdtli miZdtion
QA306T 55 1990 90-21246
5116'6 dc20 CIP
Copyianngdr eprintInidnigv.i druca,lt doefrt sh ipsu blicatainodnn o,n prolfiibtr ..ttrcitcfison rgt hem,
arep emrittetdom .tkfea iurs co ft hem aterisaulc,dh S tcoo pya chaptfeorru sei nt eachionrrg e search
Permissiisog nr antteodq uotber iepf. tss.f.trgoemts h ipsu bclaitiionnr eviepw1s0,v idtehdec ustomary
dcknowledgmofet nhtes ourciesg iven
Rcpublicdstyi�cotmnd,t icco pyinog:rm, ultiprleep roducotfia onnym ateriatlh ipisun b clditi(oinn
cludidnbg:s tr,itscp tesmr)i tteodn luyn delri cenfsreo mt heA mericMaant hematiScoacli eRteyq uesftosr
such permis�hsoiuolbend addrestsoet dh eA ssisttaont th eP ublisAhmeerr,i caMna them.ttSioccdile ty,
PO Box6 248P,r ovidenRchoed,e l sl.0.t2n9d4 0-62R4e8q uesctasn. llbes om ddeb ye -matiolr eprint
perm1SS1on�math.ams.org
© Copyrig1h9t9 0b yt heA mericdMnd themdtiScoacli etAyl lr ighrtess erved
Printiend tUhnei teSdt atoefsA merica
TheA mericdMna thematiScoacli ertcyt didnlslr ights
exceptth o�gcr antteodt heU niteSdi dlGeosv ernment
@ Thep apeurs edi nt hibso oki s. tcid-afnrdcf ca lwlist hitnh eg uidelines
cstdblitsohc cnds urpcc mrdnencden dd urability
0 Printoend r ecyclpeddp cr
109 8 67 5 43 2 009 99 89 79 69 5
Tot hMee mory
ofMy D eFarri end,
V.M .A lekseev
TabloefC ontents
Iondturction
. . . . . . . . . . . . . .i x . . . . . . . . . . . . . . . . . . . . .
ParOtn e. AncieMnatx imuma ndM inimuPmr oblems
Tefih rsstto ry
WhyD oW eS olMvaex iamnuMdmi nimum
Problems?
. . . . . . . . . . . . . . . . . . . . . 3
Teshc eond story
The OPlrdoebslte m-Dido's Problem
.. . 9.
Tehti hsrtdo ry
MaxiamnMadi niiNnma aet ( uOrptics)
. . 1.9
Tefhu osrttho ry
MaxiamnMadi niiGnme ao metry
.. . .2 7. .
Teh fifth story
MaxainmMdai niiAnml ag aenbidrAn an alysis
37
Teshx istyth o r
KeplPerro'b.sl em
. 47
Teh seventh story
ThBer achistochrone
55
Teehg tihsht ory
NewtAoeonrd'ysn aPmriocb.al..le. .m.
. 65
ParTtw o. MethodsS oolfu toifoE nx tremal Problems
Tehn isnttohr v
WhaiatsF unc.t.i.o.n..? . .
81
Teht esnttohr y
Whaiatsn E xtrPermoab.ll. e m?
93
Teeh elnsettrho rr
ExtreFmuan cootffi oVOnansre i able
99
viii CONTENTS
Teht wseytl oftrh
Extroefm aF uonfMc atnViyao rneissa .b l
ThLea grParnignec iple
. . . . .1 0.9 . . . . .
Tehti hernsttteho ry
More PSroolbvlienmg
. . . . . 1.1 9 . . . . . . . .
Tefhu orstteoernyt h
WhaHta ppLeanitetendhr T e h eooEfrx yt remal
Problems?
. . . . . . . 1.4 3. . . . . . . . . . . . .
Tehl satsotr y
MorAec curaDa itseclu.ys.,.s ..i..o.n
. 179
Biiobg.lr aphy
187
Introduction
In ldeiai fitcl oyin ss nteacnettscloshy ao roybs eeps otts h(seoi pbtlei mal)
soluAtt ireomne.nn udmoobusfesu rp c rho balreiimenssc e o naonmidin c s
technIosnlu cocaghisy te.fs ru ieesqn utsletyfro ue lst omora tt hematics.
Inma thetmhasett iuocdfmsy a, x iamnumdmi nimum bpegraonb lems
av elroytn igam geio nf,ca tt,w entcye-nfitavugeroF i.oae rl s o tnigm e
thweernreoe u noirfwma oyfts a cpkrloibnflgrofie nmdsei xntgrT ehmea .
firgsetn meertaholiof nd vse isoatnnsi dgo alotueftx itorpner bmolaewlme sr e
create3d0y 0e aaabrgoasoutt ,th t ei omfte h fero matofim oant hematical
analysis.
Theibnte ccalmteeha caret r stpaeiocnpi tailm pirzoabtlieaom ns play
crurcoiiltanehl n ea tsucriaeSlnp ceecsii.wfit ac fsauo lntldhy ma,at n y laws
of enc aabtnedu errfirmvos eod- c"avlalreipdar tiinocAnicapcllo ersd.i"n g
ttoh persien gciivapenlcnyeo sl,lo efac dtmiiosns ibwlheda itsm totiinons,
guitshhaeec stm uoatloi fom nea c hasnyisoctrael lmio ,fge hltec,at ricity,
fluagi adas,n,s d o iotsnh i,at t maxmiimniiizzcmeeessr q tuoaarin nt ities.
Somceo ncerxettrpeerb molaewlmh soc,so en dteernfitrv otemhsn e a tural
sci(etnbhcreea sc hipsrtoobNclehewrmtop,onr neo' basln oedtm h,we errse) ,
posetdhe enao dtft hsee tveeencnetnyht.T u hre tnose oeltdvh eea sse ,
welmla noayts ph reorb olgfee mosmm eetcrhyaa,nn pdih cysls,eit dco s ,t he
creoaftn ieaobw nr anch ofa nmaatlthychasaetimtm seoa k tnbioecaw asnl
thcea locvfua lruisa tions.
Thien tednesvievleoo ftp hmceea nltco ufvl aiurastc ioonuntesfid ron
abotuwctoe ntMuarnioyef s fi.tn hesesc ti eonft eitishgtehs at nede nth
nienteceenntthtu oroikie nsp patrrhotiac sne dsts,h, be be yg ionftn hiinsg
cenitsuter eyam,ise tf dh eye xhhaatduh set etdo pic.
Buittt nu erodut th tahtwi asns o tc atsThehen.e e eodfps r acleti.if cal
espeicenic aolnlaoynmt die ccsh ngoarlvioetsg noeye p ,wr obtlhceaomtus l d
nobtes olbvyte hodel m de thOondhesa t.dao d vaInwtca ens.e cessary
tcor eana etfiwee olfmd a theamnaatlikycnsaoaiwl"ssn c n, ov aenxa lysis,"
invotlhsveti uondfgy c fonuncvteaixnoc dno sn vexp reboxltermesm.a l
ix
Description:Throughout the history of mathematics, maximum and minimum problems have played an important role in the evolution of the field. Many beautiful and important problems have appeared in a variety of branches of mathematics and physics, as well as in other fields of sciences. The greatest scientists of