Table Of ContentSolving the
Schrödinger
Equation
Has Everything Been Tried?
P780.9781848167247-tp.indd 1 7/25/11 11:49 AM
TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk
Solving the
Schrödinger
Equation
Has Everything Been Tried?
Editor
Paul Popelier
Imperial College Press
ICP
P780.9781848167247-tp.indd 2 7/25/11 11:49 AM
Published by
Imperial College Press
57 Shelton Street
Covent Garden
London WC2H 9HE
Distributed by
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
SOLVING THE SCHRÖDINGER EQUATION
Has Everything Been Tried?
Copyright © 2011 by Imperial College Press
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.
For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.
ISBN-13 978-1-84816-724-7
ISBN-10 1-84816-724-5
Typeset by Stallion Press
Email: [email protected]
Printed in Singapore.
Catherine - Solving the Schrodinger Eqn.pmd 1 9/7/2011, 5:06 PM
July20,2011 9:6 9inx6in b1189-fm SolvingtheSchro¨dingerEquation
ToD.P.B.
v
July20,2011 9:6 9inx6in b1189-fm SolvingtheSchro¨dingerEquation
‘Therichestinteractionsoccurbetweentwoalmostidenticalbut
opposingconstituents.’
vi
July20,2011 9:6 9inx6in b1189-fm SolvingtheSchro¨dingerEquation
Contents
Preface xv
1. IntraculeFunctionalTheory 1
DeborahL.CrittendenandPeterM.W.Gill
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Intracules . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 ElectronCorrelationModels . . . . . . . . . . . . . . 13
1.4 DynamicandStaticCorrelation . . . . . . . . . . . . . 16
1.5 DispersionEnergies . . . . . . . . . . . . . . . . . . . 18
1.6 FutureProspects . . . . . . . . . . . . . . . . . . . . . 21
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2. ExplicitlyCorrelatedElectronicStructureTheory 25
FrederickR.Manby
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.1 Basis-setexpansions . . . . . . . . . . . . . . 25
2.2 F12Theory . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 MP2-F12 . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Explicitlycorrelatedcoupled-cluster
theory . . . . . . . . . . . . . . . . . . . . . 30
2.3 FiveThoughtsforF12Theory . . . . . . . . . . . . . . 31
2.3.1 Thought1:Doweneed(productsof)
virtuals? . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Thought2:Aretherebettertwo-electron
basissets? . . . . . . . . . . . . . . . . . . . 34
vii
July20,2011 9:6 9inx6in b1189-fm SolvingtheSchro¨dingerEquation
viii Contents
2.3.3 Thought3:Doweneedtheresolution
oftheidentity? . . . . . . . . . . . . . . . . . 35
2.3.4 Thought4:Couldwehaveexplicitcorrelation
forhigherexcitations? . . . . . . . . . . . . . 38
2.3.5 Thought5:Canweavoidthree-electronerrors
intwo-electronsystems? . . . . . . . . . . . . 39
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 40
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3. SolvingProblemswithStrongCorrelationUsing
theDensityMatrixRenormalizationGroup(DMRG) 43
GarnetKin-LicChanandSandeepSharma
3.1 TheProblemofStrongCorrelation . . . . . . . . . . . 43
3.2 TheDensityMatrixRenormalizationGroup
Wavefunction . . . . . . . . . . . . . . . . . . . . . . 46
3.3 LocalityandEntanglementintheDMRG . . . . . . . . 47
3.4 OtherPropertiesoftheDMRG . . . . . . . . . . . . . 50
3.5 RelationtotheRenormalizationGroup . . . . . . . . . 51
3.6 DynamicCorrelation—theRoleofCanonical
Transformations . . . . . . . . . . . . . . . . . . . . . 53
3.7 WhatCantheDMRGDo?ABriefHistory . . . . . . . 54
3.8 TheFuture:HigherDimensionalAnalogues . . . . . . 57
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4. Reduced-Density-MatrixTheoryforMany-electronCorrelation 61
DavidA.Mazziotti
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Variational2-RDMMethod . . . . . . . . . . . . . . . 63
4.2.1 Energyasa2-RDMfunctional . . . . . . . . 63
4.2.2 Positivityconditions . . . . . . . . . . . . . . 64
4.2.3 Semidefiniteprogramming . . . . . . . . . . . 67
4.2.4 Applications . . . . . . . . . . . . . . . . . . 69
4.3 ContractedSchro¨dingerTheory . . . . . . . . . . . . . 73
4.3.1 ACSEandcumulantreconstruction . . . . . . 74
4.3.2 SolvingtheACSEforground
andexcitedstates. . . . . . . . . . . . . . . . 75
4.3.3 Applications . . . . . . . . . . . . . . . . . . 77
4.4 Parametric2-RDMMethod . . . . . . . . . . . . . . . 80
4.4.1 Parametrizationofthe2-RDM . . . . . . . . . 81
July20,2011 9:6 9inx6in b1189-fm SolvingtheSchro¨dingerEquation
Contents ix
4.4.2 Applications . . . . . . . . . . . . . . . . . . 83
4.5 LookingAhead . . . . . . . . . . . . . . . . . . . . . 85
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5. FiniteSizeScalingforCriticalityoftheSchro¨dingerEquation 91
SabreKais
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 CriticalityforLarge-dimensionalModels . . . . . . . . 93
5.3 FiniteSizeScaling:ABriefHistory . . . . . . . . . . . 95
5.4 FiniteSizeScalingfortheSchro¨dingerEquation . . . . 97
5.5 TheHulthenPotential . . . . . . . . . . . . . . . . . . 100
5.5.1 Analyticalsolution . . . . . . . . . . . . . . . 100
5.5.2 Basissetexpansion . . . . . . . . . . . . . . 101
5.5.3 Finiteelementmethod . . . . . . . . . . . . . 101
5.5.4 Finitesizescalingresults . . . . . . . . . . . 102
5.6 FiniteSizeScalingandCriticality
ofM-electronAtoms. . . . . . . . . . . . . . . . . . . 105
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 107
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6. TheGeneralizedSturmianMethod 111
JamesAveryandJohnAvery
6.1 DescriptionoftheMethod . . . . . . . . . . . . . . . . 111
6.1.1 TheintroductionofSturmians
intoquantumtheory . . . . . . . . . . . . . . 111
6.1.2 GeneralizedSturmians . . . . . . . . . . . . . 114
6.1.3 ThegeneralizedSturmianmethodapplied
toatoms . . . . . . . . . . . . . . . . . . . . 117
6.1.4 Goscinskianconfigurations . . . . . . . . . . 118
6.1.5 Goscinskiansecularequationsforatoms
andatomicions . . . . . . . . . . . . . . . . 120
6.2 Advantages:SomeIllustrativeExamples . . . . . . . . 120
6.2.1 Thelarge-Zapproximation:restriction
ofthebasissettoanR-block . . . . . . . . . 121
6.2.2 Validityofthelarge-Zapproximation . . . . . 126
6.2.3 Coreionizationenergies . . . . . . . . . . . . 129
6.3 LimitationsoftheMethod;ProspectsfortheFuture . . 130
6.3.1 CanthegeneralizedSturmianmethod
beappliedtoN-electronmolecules?. . . . . . 133