Table Of ContentEditedby
JohnA.Rogersand
Jong-HyunAhn
SiliconNanomembranes
EditedbyJohnA.RogersandJong-HyunAhn
Silicon Nanomembranes
FundamentalScienceandApplications
Editors AllbookspublishedbyWiley-VCHare
carefullyproduced.Nevertheless,authors,
Prof.JohnA.Rogers editors,andpublisherdonotwarrantthe
Univ.IllinoisUrbana-Champaign informationcontainedinthesebooks,
Dept.Mat.Science&Engineering includingthisbook,tobefreeoferrors.
FrederickSeitzMaterialsRes.Lab Readersareadvisedtokeepinmindthat
BeckmanInstituteforAdvancedScience statements,data,illustrations,procedural
andTechnology detailsorotheritemsmayinadvertently
GoodwinAvenue beinaccurate.
UrbanaIL61801
USA LibraryofCongressCardNo.:appliedfor
Prof.Jong-HyunAhn BritishLibraryCataloguing-in-Publication
YonseiUniversity Data
SchoolofElectr.andElectronicsEng. Acataloguerecordforthisbookisavail-
Eng.BuildingIII ablefromtheBritishLibrary.
50Yonsei-ro,Seodaemoon-gu
03722Seoul Bibliographicinformationpublishedbythe
RepublicofKorea DeutscheNationalbibliothek
TheDeutscheNationalbibliothek
liststhispublicationintheDeutsche
Cover Nationalbibliografie;detailed
Background-GazelleTechnologies bibliographicdataareavailableonthe
Foreground-fotolia. Internetat<http://dnb.d-nb.de>.
Theimageswithinthecirclesarekindly
providedbytheeditors
©2016Wiley-VCHVerlagGmbH&Co.
KGaA,Boschstr.12,69469Weinheim,
Germany
Allrightsreserved(includingthoseof
translationintootherlanguages).Nopart
ofthisbookmaybereproducedinany
form – byphotoprinting,microfilm,or
anyothermeans – nortransmittedor
translatedintoamachinelanguage
withoutwrittenpermissionfromthe
publishers.Registerednames,trademarks,
etc.usedinthisbook,evenwhennot
specificallymarkedassuch,arenottobe
consideredunprotectedbylaw.
PrintISBN:978-3-527-33831-3
ePDFISBN:978-3-527-69099-2
ePubISBN:978-3-527-69101-2
MobiISBN:978-3-527-69102-9
oBookISBN:978-3-527-69100-5
CoverDesign SchulzGrafik-Design,
Fußgönheim,Germany
Typesetting SPiGlobal,Chennai,India
PrintingandBinding
Printedonacid-freepaper
V
Contents
ListofContributors XIII
PartI MaterialsandProcesses 1
1 Synthesis,Assembly,andApplicationsofSemiconductor
Nanomembranes 3
ZhengYan,KewangNan,andJohnA.Rogers
1.1 Introduction 3
1.2 StrategiesforFormingSiliconNanomembranes 4
1.2.1 SelectiveEtchingtoReleaseNanomembranesfromLayered
Assemblies 4
1.2.2 AnisotropicEtchingtoReleaseSiliconNanomembranesfromBulk
SiliconWafers 6
1.3 TransferPrintingforDeterministicAssembly 7
1.3.1 Introduction 7
1.3.2 MechanicsofTransferPrinting 9
1.3.3 TransferPrintingforSingle-andMultilayerDeterministic
Assembly 10
1.4 CompressiveBucklingforDeterministicAssembly 11
1.4.1 Introduction 11
1.4.2 BucklingonCompliantSubstratesforWavyLayouts 13
1.4.3 PatternedAdhesionforControlled,Large-ScaleBuckling 16
1.4.4 DeterministicAssemblyofComplex,Three-Dimensional
ArchitecturesbyCompressiveBuckling 18
1.5 FunctionalDevicesMadefromSiliconNanomembranes 21
1.5.1 PhysicallyTransientElectronics 21
1.5.2 Injectable,Cellular-ScaleOptoelectronicDevicesfortheBrain 23
1.5.3 Three-DimensionalIntegumentaryMembranesforSpatiotemporal
CardiacMeasurements 25
1.5.4 ArthropodEyesInspiredDigitalCamera 27
1.5.5 CephalopodSkinsInspiredOptoelectronicCamouflageSystems 29
1.6 ConclusionsandOutlook 29
References 31
VI Contents
2 ModelsofReactiveDiffusionforResorbableElectronics 37
HuanyuCheng,YonggangHuang,andJohnA.Rogers
2.1 Introduction 37
2.2 HydrolysisofSiliconNanomembranes 39
2.3 Material-LevelDissolution 41
2.4 DissolutionofDevicewithLayeredStructures 47
2.5 DiscussionandConclusion 53
Acknowledgments 54
References 54
PartII ApplicationsinBio-IntegratedandFlexibleElectronics 57
3 TransparentandFoldableElectronicsEnabledbySi
Nanomembranes 59
HoukJang,TanmoyDas,WonhoLee,andJong-HyunAhn
3.1 Introduction 59
3.2 Fabrication 61
3.3 Characterization 64
3.3.1 MechanicalPropertiesofSiNMinBendingandStretching 65
3.3.2 OpticalProperties 67
3.3.3 PiezoresistiveEffectinSiNM 69
3.4 ConfigurationsofTransparentandFoldableElectronicDevices 72
3.4.1 RepresentativeMaterialsforTransparentandFoldable
Electronics 72
3.4.2 ElectricalandOpticalPropertiesofTransparentTFTs 73
3.4.3 ModificationoftheBendingStiffnesswithSubstrateThickness 75
3.4.4 ElectromechanicalPropertiesofFoldableTFTs 77
3.4.5 ControlofStiffnessbyThinningofSiforStretchableElectronic
Devices 78
3.4.6 ControlofStrainDistributionbyGeometricalDesign 79
3.4.7 MechanicalPropertiesofStretchableInverters 82
3.5 ConcludingRemarks 83
References 84
4 High-PerformanceFlexibleElectronicandOptoelectronicDevicesby
MechanicalExfoliationfromaBrittleSubstrate 89
DavoodShahrjerdi
4.1 Introduction 89
4.2 Steady-StateSubstrateCrackingParalleltotheInterfaceina
Bilayers 90
4.3 Spalling-ModeFractureforLayerTransfer 92
4.4 High-PerformanceFlexibleElectronicsbyControlledSpalling 95
4.4.1 Ultra-Low-PowerNanoscaleSiliconIntegratedCircuitson
Plastic 95
4.4.2 ElectricalCharacteristicsofFlexibleDevicesandCircuits 100
Contents VII
4.4.3 EffectofStrainonDevicePerformance 102
4.4.4 Very-High-EfficiencyFlexibleTandemSolarCells 104
4.5 FutureDirections 106
References 108
5 High-Speed,FlexibleElectronicsbyUseofSiNanomembranes 113
YeiHwanJung,Jung-HunSeo,WeidongZhou,andZhenqiangMa
5.1 Introduction 113
5.2 FabricationofHigh-SpeedMOSFETs 114
5.2.1 DopingProfileSettings 114
5.2.2 GenericFabricationProcess 115
5.3 DesignandPerformanceofHigh-SpeedMOSFET 118
5.4 High-SpeedMOSFETUsingStrainedSiNMs 121
5.4.1 SiGe-BasedStrainEngineering 121
5.4.2 FabricationofFlexibleStrained-ChannelRFTFTs 125
5.4.3 DC/RFCharacteristicsofFlexibleStrained-Channel
RFTFTs 126
5.5 High-SpeedDiodesandSwitcheswithSiNMs 129
5.5.1 FabricationofFlexibleRFDiodesandSwitches 129
5.5.2 RFCharacteristicsofFlexibleRFDiodes/Switches 132
5.5.3 AnalyticalModelingofFlexibleRFDiodes/Switches 134
5.6 OutlooktowardFutureFastElectronics 135
References 137
6 FlexibleandStretchableBiointegratedElectronicsUsingSilicon
Nanomembranes 143
JaeminKim,MincheolLee,HyungJoonShim,andDae-HyeongKim
6.1 Introduction 143
6.2 OverviewofFlexibleOrganic/NW-BasedBiomedical
Devices 144
6.2.1 FlexibleOrganicBiomedicalDevices 144
6.2.2 FlexibleNW-BasedBiomedicalDevices 147
6.3 Flexible/StretchableSingle-CrystalSilicon-BasedBiomedical
Devices 148
6.3.1 FabricationProcessesofSiNMElectronics 148
6.3.2 HumanMotionDetectorsUsingWearableSiNMStrain
Gages 150
6.3.3 OrganMotionDetectorsUsingImplantableSiNMStrain
Gages 152
6.3.4 SiNMTemperatureSensorsforPhysiologicalMonitoring 154
6.3.5 IntegratedArrayConfigurationofSiNMSensors 155
6.4 ActivelyMultiplexedElectrophysiologyUsingSiNM
Transistors 157
6.4.1 MultiplexedElectrodeArrayforNeuralActivityMonitoring 158
VIII Contents
6.4.2 MultiplexedElectrodeArrayforCardiacElectrophysiology
Mapping 160
6.5 Conclusions 161
Acknowledgments 162
References 162
7 FlexibleSiNanomembraneSensorforHuman–Machine
Interface 169
Min-SeokKim
7.1 Introduction 169
7.2 SiNM-BasedTactileSensor 170
7.2.1 OverviewofTactileSensingTechnologies 170
7.2.2 DesignandFabricationofSiNM-BasedTactileSensor 172
7.2.3 PerspectivesandOutlookofSi-NM-BasedTactileSensor 181
7.3 SiNM-BasedFlexibleSensorforBiologicalSignalMonitoringand
MotionSensingofHumans 182
7.3.1 Overview 182
7.3.2 EpidermalandWearableDevices 183
7.3.3 ImplantableDevices 190
7.3.4 BiodegradableandTransientDevices 193
7.3.5 PerspectivesandOutlookofWearable,Implantable,andTransient
Electronics 195
7.4 Summary 197
Acknowledgments 199
References 199
8 FlexibleandTransparentSolarCellsUsingSiNanomembranes 203
JongseungYoon
8.1 Introduction 203
8.2 FabricationofUltrathinMonocrystallineSiliconSolarCells 204
8.3 TransferPrintingofUltrathinSiliconSolarCells 208
8.4 PhotovoltaicPerformanceofPrintedSiliconMicrocells 211
8.5 UnconventionalModuleDesignsofUltrathinSilicon
Microcells 212
8.5.1 ModuleswithHighDegreesofMechanicalFlexibility 212
8.5.2 ModuleswithDefinableOpticalTransparency 215
8.5.3 ModuleswithMicroscaleConcentratorOptics 216
8.5.4 ModuleswithaCompactSize,HighVoltageOutputs 217
8.6 PhotonManagementforUltrathinSiliconMicrocells 219
8.6.1 MicrocellswithHexagonallyPeriodicNanoposts 219
8.6.2 MicrocellswithDensity-GradedSurfaceNanostructures 232
8.7 Conclusion 233
Acknowledgment 237
References 237