Table Of Contentschinzel_vol_2_titelei 5.3.2007 18:34 Uhr Seite 1
H e r i t a g e o f E u r o p e a n M a t h e m a t i c s
Advisory Board
Michèle Audin, Strasbourg
Ciro Ciliberto, Roma
Ildar A. Ibragimov, St. Petersburg
Wladyslaw Narkiewicz, Wroclaw
Peter M. Neumann, Oxford
Samuel J. Patterson, Göttingen
schinzel_vol_2_titelei 5.3.2007 18:34 Uhr Seite 2
Andrzej Schinzel in 2007
schinzel_vol_2_titelei 5.3.2007 18:34 Uhr Seite 3
Andrzej Schinzel
Selecta
Volume II
Elementary, Analytic
and Geometric Number Theory
Edited by
Henryk Iwaniec
Wladyslaw Narkiewicz
Jerzy Urbanowicz
schinzel_vol_2_titelei 5.3.2007 18:34 Uhr Seite 4
Author:
Andrzej Schinzel
Institute of Mathematics
Polish Academy of Sciences
ul.Śniadeckich 8,skr.poczt.21
00-956 Warszawa 10
Poland
Editors:
Henryk Iwaniec Władysław Narkiewicz Jerzy Urbanowicz
Department of Mathematics Institute of Mathematics Institute of Mathematics
Rutgers University University of Wrocław Polish Academy of Sciences
New Brunswick,NJ 08903 pl.Grunwaldzki 2/4 ul.Śniadeckich 8,skr.poczt.21
U.S.A. 50-384 Wrocław 00-956 Warszawa 10
[email protected] Poland Poland
[email protected] [email protected]
2000 Mathematics Subject Classification:11,12
ISBN 978-3-03719-038-8 (Set Vol I & Vol II)
The Swiss National Library lists this publication in The Swiss Book,the Swiss national bibliography,
and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch.
This work is subject to copyright.All rights are reserved,whether the whole or part of the material is
concerned,specifically the rights of translation,reprinting,re-use of illustrations,recitation,broadca-
sting,reproduction on microfilms or in other ways,and storage in data banks.For any kind of use per-
mission of the copyright owner must be obtained.
© 2007 European Mathematical Society
Contact address:
European Mathematical Society Publishing House
Seminar for Applied Mathematics
ETH-Zentrum FLI C4
CH-8092 Zürich
Switzerland
Phone:+41 (0)44 632 34 36
Email:[email protected]
Homepage:www.ems-ph.org
Printed in Germany
9 8 7 6 5 4 3 2 1
Contents
Volume 2
G. Arithmeticfunctions 859
CommentaryonG:Arithmeticfunctions
byKevinFord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861
G1 Onfunctionsϕ(n)andσ(n) . . . . . . . . . . . . . . . . . . . . . . . . . 866
G2 Surl’équationϕ(x)=m . . . . . . . . . . . . . . . . . . . . . . . . . . . 871
G3 Surunproblèmeconcernantlafonctionϕ(n) . . . . . . . . . . . . . . . . 875
G4 Distributionsofthevaluesofsomearithmeticalfunctions
withP.Erdo˝s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877
G5 Onthefunctionsϕ(n)andσ(n)
withA.Makowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 890
(cid:4)
G6 Onintegersnotoftheformn−ϕ(n)
withJ.Browkin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895
H. Divisibilityandcongruences 899
CommentaryonH:Divisibilityandcongruences
byH.W.Lenstrajr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
H1 SurunproblèmedeP.Erdo˝s . . . . . . . . . . . . . . . . . . . . . . . . . 903
H2 Onthecongruenceax ≡b(modp) . . . . . . . . . . . . . . . . . . . . . 909
H3 Onthecompositeintegersoftheformc(ak+b)!±1 . . . . . . . . . . . 912
H4 Onpowerresiduesandexponentialcongruences . . . . . . . . . . . . . . 915
H5 Abelianbinomials,powerresiduesandexponentialcongruences . . . . . . 939
H6 AnextensionofWilson’stheorem
withG.Baron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971
H7 Systemsofexponentialcongruences . . . . . . . . . . . . . . . . . . . . 975
H8 Onaprobleminelementarynumbertheory
withJ.Wójcik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987
H9 Onexponentialcongruences . . . . . . . . . . . . . . . . . . . . . . . . . 996
H10 Unecaractérisationarithmétiquedesuitesrécurrenteslinéaires
avecDanielBarskyetJean-PaulBézivin. . . . . . . . . . . . . . . . . 1001
H11 Onpowerresidues
withM.Skałba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012
vi Contents
I. Primitivedivisors 1031
CommentaryonI:Primitivedivisors
byC.L.Stewart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
I1 Onprimitiveprimefactorsofan−bn . . . . . . . . . . . . . . . . . . . . 1036
I2 OnprimitiveprimefactorsofLehmernumbersI . . . . . . . . . . . . . . 1046
I3 OnprimitiveprimefactorsofLehmernumbersII . . . . . . . . . . . . . . 1059
I4 OnprimitiveprimefactorsofLehmernumbersIII . . . . . . . . . . . . . 1066
I5 PrimitivedivisorsoftheexpressionAn−Bninalgebraicnumberfields . . 1090
I6 Anextensionofthetheoremonprimitivedivisorsinalgebraicnumberfields 1098
J. Primenumbers 1103
CommentaryonJ:Primenumbers
byJerzyKaczorowski . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105
J1 Surcertaineshypothèsesconcernantlesnombrespremiers
withW.Sierpin´ski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113
J2 Remarksonthepaper“Surcertaineshypothèsesconcernantlesnombres
premiers” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134
J3 AremarkonapaperofBatemanandHorn . . . . . . . . . . . . . . . . . 1142
J4 OntwotheoremsofGelfondandsomeoftheirapplications
Section5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
J5 Ontherelationbetweentwoconjecturesonpolynomials . . . . . . . . . . 1154
K. Analyticnumbertheory 1193
CommentaryonK:Analyticnumbertheory
byJerzyKaczorowski . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195
K1 OnSiegel’szero
withD.M.Goldfeld . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199
K2 Multiplicativepropertiesofthepartitionfunction
withE.Wirsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1211
K3 OnananalyticproblemconsideredbySierpin´skiandRamanujan . . . . . 1217
K4 ClassnumbersandshortsumsofKroneckersymbols
withJ.UrbanowiczandP.VanWamelen . . . . . . . . . . . . . . . . . 1224
L. Geometryofnumbers 1245
CommentaryonL:Geometryofnumbers
byWolfgangM.Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . 1247
L1 AdecompositionofintegervectorsII
withS.Chaładus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1249
L2 AdecompositionofintegervectorsIV . . . . . . . . . . . . . . . . . . . 1259
L3 ApropertyofpolynomialswithanapplicationtoSiegel’slemma . . . . . 1274
L4 Onvectorswhosespancontainsagivenlinearsubspace
withI.AlievandW.M.Schmidt . . . . . . . . . . . . . . . . . . . . . 1288
Contents vii
M. Otherpapers 1303
CommentaryonM:Otherpapers
byStanisławKwapien´ . . . . . . . . . . . . . . . . . . . . . . . . . . 1305
TheinfluenceoftheDavenport–Schinzelpaperindiscrete
andcomputationalgeometry
byEndreSzemerédi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1311
M1 Surl’équationfonctionnellef[x+y·f(x)]=f(x)·f(y)
avecS.Gołab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1314
(cid:4)
M2 Acombinatorialproblemconnectedwithdifferentialequations
withH.Davenport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327
M3 AnanalogueofHarnack’sinequalityfordiscretesuperharmonic
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1338
M4 Aninequalityfordeterminantswithrealentries . . . . . . . . . . . . . . . 1347
M5 ComparisonofL1-andL∞-normsofsquaresofpolynomials
withW.M.Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1350
Unsolvedproblemsandunprovedconjectures 1365
Unsolvedproblemsandunprovedconjecturesproposedby
AndrzejSchinzelintheyears1956–2006arrangedchronologically . . . . 1367
PublicationlistofAndrzejSchinzel 1375
viii Contents
Volume 1
A. Diophantineequationsandintegralforms 1
CommentaryonA:Diophantineequationsandintegralforms
byR.Tijdeman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
A1 SurlesnombresdeMersennequisonttriangulaires
avecGeorgesBrowkin . . . . . . . . . . . . . . . . . . . . . . . . . . 11
A2 Surquelquespropriétésdesnombres3/net4/n,oùnestunnombreimpair 13
A3 Surl’existenced’uncerclepassantparunnombredonnédepointsaux
coordonnéesentières . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
A4 Surlessommesdetroiscarrés . . . . . . . . . . . . . . . . . . . . . . . . 18
(cid:2)
A5 OntheDiophantineequation n A xϑk =0 . . . . . . . . . . . . . . . 22
k=1 k k
A6 Polynomialsofcertainspecialtypes
withH.DavenportandD.J.Lewis . . . . . . . . . . . . . . . . . . . . 27
A7 AnimprovementofRunge’stheoremonDiophantineequations . . . . . . 36
A8 Ontheequationym =P(x)
withR.Tijdeman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A9 Zetafunctionsandtheequivalenceofintegralforms
withR.Perlis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A10 QuadraticDiophantineequationswithparameters
withD.J.Lewis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A11 Selmer’sconjectureandfamiliesofellipticcurves
withJ.W.S.Cassels . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A12 Familiesofcurveshavingeachanintegerpoint . . . . . . . . . . . . . . . 67
A13 Hasse’sprincipleforsystemsofternaryquadraticformsandforone
biquadraticform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A14 OnRunge’stheoremaboutDiophantineequations
withA.Grytczuk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A15 Onsumsofthreeunitfractionswithpolynomialdenominators . . . . . . . 116
A16 Onequationsy2 =xn+kinafinitefield
withM.Skałba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
B. Continuedfractions 127
CommentaryonB:Continuedfractions
byEugèneDubois . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B1 Onsomeproblemsofthearithmeticaltheoryofcontinuedfractions . . . . 131
B2 OnsomeproblemsofthearithmeticaltheoryofcontinuedfractionsII . . . 149
B3 OntwoconjecturesofP.ChowlaandS.Chowlaconcerningcontinued
fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Contents ix
C. Algebraicnumbertheory 167
CommentaryonC:Algebraicnumbers
byDavidW.BoydandD.J.Lewis . . . . . . . . . . . . . . . . . . . . 169
C1 ArefinementoftwotheoremsofKronecker
withH.Zassenhaus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
C2 OnatheoremofBauerandsomeofitsapplications . . . . . . . . . . . . 179
C3 AnextensionofthetheoremofBauerandpolynomialsofcertainspecialtypes
withD.J.LewisandH.Zassenhaus . . . . . . . . . . . . . . . . . . . 190
C4 Onsumsofrootsofunity.(SolutionoftwoproblemsofR.M.Robinson) . 197
C5 OnatheoremofBauerandsomeofitsapplicationsII . . . . . . . . . . . 210
C6 Ontheproductoftheconjugatesoutsidetheunitcircleofanalgebraicnumber 221
C7 Onlineardependenceofroots . . . . . . . . . . . . . . . . . . . . . . . . 238
C8 OnSylow2-subgroupsofK O forquadraticnumberfieldsF
2 F
withJ.Browkin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
C9 Aclassofalgebraicnumbers . . . . . . . . . . . . . . . . . . . . . . . . 264
C10 OnvaluesoftheMahlermeasureinaquadraticfield(solutionofaproblem
ofDixonandDubickas) . . . . . . . . . . . . . . . . . . . . . . . . . 272
D. Polynomialsinonevariable 281
CommentaryonD:Polynomialsinonevariable
byMichaelFilaseta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
D1 Solutiond’unproblèmedeK.Zarankiewiczsurlessuitesdepuissances
consécutivesdenombresirrationnels . . . . . . . . . . . . . . . . . . 295
D2 Onthereducibilityofpolynomialsandinparticularoftrinomials . . . . . 301
D3 Reducibilityofpolynomialsandcoveringsystemsofcongruences . . . . . 333
D4 ReducibilityoflacunarypolynomialsI . . . . . . . . . . . . . . . . . . . 344
D5 ReducibilityoflacunarypolynomialsII . . . . . . . . . . . . . . . . . . . 381
D6 Anoteonthepaper“ReducibilityoflacunarypolynomialsI”
withJ.Wójcik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
D7 ReducibilityoflacunarypolynomialsIII . . . . . . . . . . . . . . . . . . 409
D8 ReducibilityoflacunarypolynomialsIV . . . . . . . . . . . . . . . . . . 447
D9 Onthenumberoftermsofapowerofapolynomial . . . . . . . . . . . . 450
D10 Onreducibletrinomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
D11 OnaconjectureofPosnerandRumsey
withK.Gyo˝ry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
D12 ReducibilityoflacunarypolynomialsXII . . . . . . . . . . . . . . . . . . 563
D13 OnreducibletrinomialsII . . . . . . . . . . . . . . . . . . . . . . . . . . 580
D14 OnreducibletrinomialsIII . . . . . . . . . . . . . . . . . . . . . . . . . . 605
D15 OnthegreatestcommondivisoroftwounivariatepolynomialsI . . . . . . 632
D16 OnthegreatestcommondivisoroftwounivariatepolynomialsII . . . . . 646
D17 Onthereducedlengthofapolynomialwithrealcoefficients . . . . . . . . 658
x Contents
E. Polynomialsinseveralvariables 693
CommentaryonE:Polynomialsinseveralvariables
byUmbertoZannier . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
E1 Someunsolvedproblemsonpolynomials . . . . . . . . . . . . . . . . . . 703
E2 Reducibilityofpolynomialsinseveralvariables . . . . . . . . . . . . . . 709
E3 Reducibilityofpolynomialsoftheformf(x)−g(y) . . . . . . . . . . . 715
E4 Reducibilityofquadrinomials
withM.Fried . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
E5 Ageneralirreducibilitycriterion . . . . . . . . . . . . . . . . . . . . . . . 739
E6 Somearithmeticpropertiesofpolynomialsinseveralvariables
withH.L.Montgomery . . . . . . . . . . . . . . . . . . . . . . . . . . 747
E7 Ondifferencepolynomialsandhereditarilyirreduciblepolynomials
withL.A.RubelandH.Tverberg . . . . . . . . . . . . . . . . . . . . 755
E8 Onadecompositionofpolynomialsinseveralvariables . . . . . . . . . . 760
E9 Onweakautomorphsofbinaryformsoveranarbitraryfield . . . . . . . . 779
E10 Reducibilityofsymmetricpolynomials . . . . . . . . . . . . . . . . . . . 828
F. Hilbert’sIrreducibilityTheorem 835
CommentaryonF:Hilbert’sIrreducibilityTheorem
byUmbertoZannier . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
F1 OnHilbert’sIrreducibilityTheorem . . . . . . . . . . . . . . . . . . . . . 839
F2 Aclassofpolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846
F3 TheleastadmissiblevalueoftheparameterinHilbert’sIrreducibility
Theorem
withUmbertoZannier . . . . . . . . . . . . . . . . . . . . . . . . . . 849
Description:Andrzej Schinzel, born in 1937, is a leading number theorist whose work has had a lasting impact on modern mathematics. He is the author of over 200 research articles in various branches of arithmetics, including elementary, analytic, and algebraic number theory. He has also been, for nearly 40 year