Table Of ContentThePlantCell,Vol.27:9–19,January2015,www.plantcell.orgã2015AmericanSocietyofPlantBiologists.Allrightsreserved.
REVIEW
SCFTIR1/AFB-Based Auxin Perception: Mechanism and Role in
Plant Growth and Development
MohammadSalehin,RammyaniBagchi,andMarkEstelle1
HowardHughesMedicalInstituteandSectionofCellandDevelopmentalBiology,UniversityofCaliforniaSanDiego,LaJolla,
California92093
Auxinregulatesavastarrayofgrowthanddevelopmentalprocessesthroughoutthelifecycleofplants.Auxinresponsesare
highlycontextdependentandcaninvolvechangesincelldivision,cellexpansion,andcellfate.Thecomplexityoftheauxin
response is illustrated by the recent finding that the auxin-responsive gene set differs significantly between different cell
types in the root. Auxin regulation of transcription involves a core pathway consisting of the TIR1/AFB F-box proteins, the
Aux/IAAtranscriptionalrepressors,andtheARFtranscriptionfactors.Auxinisperceivedbyatransientcoreceptorcomplex
consistingofaTIR1/AFBproteinandanAux/IAAprotein.AuxinbindingtothecoreceptorresultsindegradationoftheAux/
IAAsandderepressionofARF-basedtranscription.Althoughthebasicoutlinesofthispathwayarenowwellestablished,it
remainsunclearhowspecificityofthepathwayisconferred.However,recentresults,focusingonthewaysthatthesethree
familiesofproteinsinteract,arestartingtoprovideimportantclues.
INTRODUCTION PROTEIN2A(SKP2A)(Juradoetal.,2010),andthenuclearSCFTIR1/
AFBs-Aux/IAA(SKP-Cullin-Fbox[SCF],TIR1/AFB[TRANSPORTIN-
ThetermauxinisderivedfromtheGreekword“auxein,”which
HIBITORRESISTANT1/AUXINSIGNALINGF-BOX],AUXIN/INDOLE
meanstogrow.Darwinobservedtheeffectsofauxininplantsas
ACETICACID)auxincoreceptors(Dharmasirietal.,2005a;Kepinski
earlyas1880.Inhisbook“ThePowerofMovementinPlants,”he
and Leyser, 2005; Calderón-Villalobos et al., 2012). Although there
described how the effects of light on movement of canary grass
havebeensomeimportantrecentadvancesinourunderstandingof
coleoptiles were mediated by a chemical signal (Darwin and
ABP1,thisreviewfocusesontheSCFTIR1/AFBcomplexesandtheir
Darwin,1880).Ittookanother60yearsofresearchtoshowthat
function in auxin perception and the regulation of transcription in
this chemical signal is indole-3-acetic acid, the major naturally
Arabidopsisthaliana.
occurring auxin in plants (Haagen-Smit et al., 1946; Mauseth,
1991;Ravenetal.,1992;SalisburyandRoss,1992;Arteca,1996).
Afterthisdiscovery,auxinresearchadvancedrapidlyalongmul- SCFTIR1/AFBsANDAUXINPERCEPTION
tiple trajectories. Numerous auxinic compounds were identified,
some of which were developed as herbicides and growth regu- Auxinregulatestranscriptionofauxin-responsivegenesthrough
lators(Sterlingetal.,1997;CobbandReade,2010).Basedonthe the action ofthe TIR1/AFBF-boxproteins, theAux/IAAtran-
chemicalstructuresofthesecompounds,thespatialfeaturesof scriptionalrepressors,andtheauxinresponsefactors(ARFs).The
a hypothetical auxin receptor were predicted (Thimman, 1977). Arabidopsisgenomeencodes6TIR1/AFBs,29Aux/IAAproteins,
Thismarkedthebeginningofwhatturnedouttobeanextended and23ARFs.Ingeneral,theAux/IAAsactbydirectlybindingtothe
searchfortheauxinreceptor. ARFsandrecruitingthecorepressorproteinTOPLESS(TPL)tothe
Auxin has been associated with embryogenesis (reviewed in chromatin(Figure1;Szemenyeietal.,2008;reviewedinGuilfoyle
Jürgens, 1995), tropic responses (Firn and Digby, 1980), organo- andHagen,2007,2012;MockaitisandEstelle,2008;Chapmanand
genesis (Li et al., 2005; De Smet et al., 2010), root development Estelle,2009;WangandEstelle,2014;Guilfoyle,2015).Degrada-
(reviewed in Benjamins and Scheres, 2008), shoot development tionoftheAux/IAArepressorsisacriticaleventinauxinsignaling
(Vernoux et al., 2011), and plant defense (reviewed in Kazan and andrequiresaubiquitinproteinligaseE3calledSCFTIR1/AFB(Gray
Manners, 2009). Understanding how auxin can regulate so many etal.,1999,2001;Ramosetal.,2001).Thesubstraterecognition
diverse physiological and developmental processes is an active subunitofthisE3,theF-boxproteinTIR1(orrelatedAFBprotein),
andexcitingareaofcurrentresearch. wasfirstidentifiedinageneticscreenforauxintransportinhibitor-
Therearethreeknownclassesofauxinreceptors:AUXINBIND- responsemutants(Rueggeretal.,1998).Sincethen,anumberof
INGPROTEIN1(ABP1)(Herteletal.,1972;Jonesetal.,1998;Tromas elegantstudieshaveshownthatauxinpromotesdegradationofthe
et al., 2013; Xu et al., 2014), S-PHASE KINASE-ASSOCIATED Aux/IAA proteins through the SCFTIR1/AFB, in an auxin-dependent
manner (Gray et al., 2001; Dharmasiri et al., 2005a; Kepinski and
Leyser,2005;Tanetal.,2007).TheAux/IAAdegronislocatedina
[email protected]. conserveddomaincalledDomainII(dII).Insteadofcausingasub-
www.plantcell.org/cgi/doi/10.1105/tpc.114.133744 stratemodification,commonlyrequiredforsubstraterecognitionby
10 ThePlantCell
Figure1. SCFTIR1/AFB-BasedAuxinPerceptionandResponse.
(A) Domain structure of the Aux/IAA and ARF proteins. EAR is the ETHYLENE RESPONSE FACTOR-associated amphiphilic repression motif that
interactswiththeTPLcorepressor.ThedIIdomainfacilitatesinteractionwiththeTIR1/AFBproteininresponsetoauxin.ThePB1domainhasboth
positiveandnegativeelectrostaticinterfacesfordirectionalproteininteraction.DBDistheB3DNAbindingdomain,andMRisthemiddleregionthat
determinestheactivityoftheARF.
(B)ActivatingARFscanformdimersthroughtheirDBDsandbindinvertedrepeatAuxREs(Boeretal.,2014).Atlowauxinlevels,theAux/IAAproteins
formmultimerswithARFsandrecruitTPLtothechromatin.NotethatmostAuxREsarenotfoundasinvertedrepeatsinplantgenomes,indicatingthat
ARFsbindtoDNAinconfigurationsotherthanshownhere.
(C) High levels of auxin promote ubiquitination and degradation of Aux/IAAs through SCFTIR1/AFB and the proteasome. ARFs are free to activate
transcriptionoftargetgenes.ThesiteofAux/IAAubiquitinationisarbitrary.Theactualsitesareunknown.Auxinisrepresentedbytheredoval.
manyothercullin-basedE3ligases,auxinenhancestheinteraction SinglemutantsinmembersoftheTIR1/AFBgenefamilyhave,
betweenSCFTIR1/AFBandthedIIbydirectlybindingtoTIR1,dem- atmost,amildauxin-relatedphenotype.Thetir1mutantisauxin
onstratingthatTIR1isthelong-soughtauxinreceptor(Dharmasiri resistant and is slightly shorter than wild-type plants (Ruegger
etal.,2005a,Kepinskiand Leyser2005;reviewedin Skaaretal., etal.,1998).However,higherordermutantswithcombinations
2013). of afb1, afb2, and afb3 in the tir1 mutant background exhibit
SCFTIR1/AFB-BasedAuxinPerception 11
severegrowthdefectsandincreasedauxinresistance.Mostofthe
quadruple tir1 afb1 afb2 afb3 mutants arrest after germination.
Occasionally,tir1afb1afb2afb3plantsareabletogrowbeyondthis
stage but show defects in multiple auxin responses (Dharmasiri
etal.,2005b,Parryetal.,2009).Inaddition,mutationsinotherSCF
subunitslikeCUL1,ASK1,andRBX1causeauxinresistanceand
stabilize the Aux/IAA proteins (Gray et al., 1999, 2001, 2002;
Hellmannetal.,2003;Moonetal.,2007;Gilkerson,etal.,2009).
Recently,twonewtir1mutantswereidentifiedinayeasttwo-hybrid-
basedscreen.Thetir1D170Eandtir1M473Lmutationsincreasethe
affinityofTIR1fortheAux/IAAproteins,whereasplantsexpressing
tir1D170Eandtir1M473Ltransgenesshowanauxinhypersensitive
phenotypeanddevelopmentaldefects(Yuetal.,2013).
STRUCTURALINSIGHTINTOAUXINPERCEPTION
BYSCFTIR1/AFBs
All six members of the TIR1/AFB family have been shown to
functionasauxinreceptors(Dharmasirietal.,2005a,2005b;Parry
et al., 2009; Greenham et al., 2011). Besides the F-box domain,
theseproteinsalsocontainaleucine-richrepeat(LRR)domainwith
18 LRRs. AFB4 and AFB5 proteins are distinct from the other
members of this family in thatthey haveanN-terminalextension
thatisnotpresentinTIR1andAFB1toAFB3.
When the TIR1/AFB proteins were first shown to function as
auxinreceptors,themechanismofauxinperceptionwasunknown.
Later,structuralstudiesrevealedtheelegantwaythatauxinactsto
facilitatetheinteractionbetweenTIR1andtheAux/IAAsubstrate.
Figure2. StructureofTIR1-ASK1inaComplexwithIAAandtheDegron
ThestructureofTIR1wassolvedinacomplexwithASK1,thedII
PeptidefromIAA7.
peptide from the Aux/IAA IAA7, and auxin (Tan et al., 2007; re-
viewed in Calderon-Villalobos et al., 2010) (Figure 2). The TIR1- TIR1-ASK1 structure as described by Tan et al. (2007). ASK1 (green)
interactswithTIR1(red)throughtheF-boxdomain.IAA(blue)ispresent
ASK1 complexis mushroom shaped. Thecap of themushroom,
intheauxinbindingpocketandactstostabilizetheinteractionbetween
includingtheauxinbindingpocket,isformedbytheLRRdomainof
TIR1andthedegronpeptide(palecyan).AsingleInsP6molecule(pale
TIR1.TheF-boxdomaintogetherwithASK1formsthestemofthe
orange)isboundtoTIR1beneaththeauxinbindingpocket.
mushroom.TheLRRsformaslightlytwisted,incompletering-like
solenoidstructureofalternatingsolvent-facinga-helicesandcore-
liningb-strands.ThetopsurfaceoftheLRRdomainhasasingle The six TIR1/AFB proteins are part of small subclade of F-box
proteinswithsevenmembers.Theseventhproteininthefamilyis
pocket for auxin binding (Tan et al., 2007; reviewed in Calderon-
CORONATINEINSENSITIVE1(COI1),knowntobeessentialforthe
Villalobos et al., 2010). Strikingly, the structure of the TIR1-ASK1
response to jasmonic acid (JA), a hormone that is structurally un-
complex does not change substantially upon auxin binding, in-
related to auxin and has a very different role in the plant. Never-
dicatingthatauxindoesnotinduceaconformationalchange.Atthe
theless, there is a striking similarity between the auxin and JA
baseoftheauxinbindingpocketliesaninositolhexakisphosphate
(InsP6)molecule.AlthoughthebiologicalsignificanceofthisInsP6 signalingpathways(Chinietal.,2007;Thinesetal.,2007;Yanetal.,
2007;reviewedinKatsiretal.,2008;PérezandGoossens,2013).In
moleculeisnotknown,ithasbeensuggestedthatitmightactas
the case of JA, degradation of a family of repressors called the
astructuralcofactor(Tanetal.,2007).Structuralstudieswithdif-
JASMONATEZIM(JAZ)proteinsismediatedbyanE3ligasecalled
ferentauxincompoundsrevealedthatthebindingpocketforauxin
SCFCOI1. The interaction between the JAZ proteins and COI1 is
is somewhat promiscuous. Most importantly, these studies re-
mediatedbydirectbindingtotheJAderivativeJA-isoleucine(Thines
vealedthatunlikeanimalhormones,wheretheligandbindingsiteis
etal.,2007;Sheardetal.,2010).Thus,plantshaveevolvedasimilar
located distantfrom theactivesiteofthereceptor,auxinactsas
a“molecularglue”tostabilizetheinteractionbetweenTIR1andthe mechanismtorespondtoverydifferentregulatorymolecules.
Aux/IAAprotein(Tanetal.,2007;reviewed inCalderon-Villalobos
etal.,2010;Skaaretal.,2013).Sofar,thestructureofSCFTIR1has
THEAUXINCORECEPTORMODEL:ANEWWAYTO
beensolvedonlywiththeshortdegronsequencefromtheAux/IAA
THINKABOUTAUXINACTION
proteins(Tanetal.,2007).Itisexpectedthatacompletestructure
ofSCFTIR1withauxinandafull-lengthAux/IAAproteinwillreveal Recently, it was shown that efficient binding of auxin to TIR1
more structural insights into how auxin triggers ubiquitination of requirestheassemblyofacoreceptorcomplexconsistingofTIR1
Aux/IAAproteins. andanAux/IAAprotein(Calderón-Villalobosetal.,2012).Thismay
12 ThePlantCell
besignificantbecausetherearesixTIR1/AFBproteinsand29Aux/ Aux/IAAANDARFGENESACTDOWNSTREAM
IAAproteinsinArabidopsis.Thus,itispossiblethatdifferentcom- OFSCFTIR1/AFBs
binationsofTIR1/AFBandAux/IAAwillhavedifferentbiochemical
properties(Figure3).Indeed,auxinbindingassayswithpurifiedTIR1 The Aux/IAA genes were discovered because some members
arerapidlyinducedbyauxin.Inpea(Pisumsativum)andsoybean
andAux/IAAproteinsshowedthatdifferentcoreceptorcomplexes
have different affinities for auxin (Calderón-Villalobos et al., 2012). (Glycine max), the level of several Aux/IAA transcripts increased
withinafewminutesofauxintreatment(AbelandTheologis,1996;
Forexample,theTIR1-IAA7pairhasaK of10to15nMforIAA,
d reviewed in Hagen and Guilfoyle, 2002). It is important to note,
whileTIR1-IAA12hasaK ofbetween250and300nMforIAA.
d however, that some Aux/IAAs, like IAA28 in Arabidopsis, are not
DifferencesinK appeartobedeterminedprimarilybythedIIse-
d
auxininduced(Roggetal.,2001).
quenceof the Aux/IAAproteins, although other sequences may
Most of the Aux/IAA proteins have four conserved domains.
alsocontribute(Calderón-Villalobosetal.,2012).
Domain I has an ETHYLENE RESPONSE FACTOR ASSOCI-
Localizedregulationofauxinlevelshasakeyroleinanumberof
ATEDAMPHIPHILICREPRESSION(EAR)motifwheretheTPL/
processesincludingpositioningoforganprimordia,maintenanceof
TOPLESS RELATED corepressor binds (Long et al., 2006;
stemcellniches,patterningofthefruit,andabilityofauxintodirect
Szemenyeietal.,2008;Causieretal.,2012).DomainIIcontains
cell division, expansion, and differentiation (Jones et al., 1998;
thedegronsequence,whichinteractsdirectlywiththeTIR1/AFB
Sabatinietal.,1999;Reinhardtetal.,2000;Benkováetal.,2003;Li
et al., 2005; Sorefan et al., 2009; Jurado et al., 2010; Mähönen proteinandauxin.DomainIIIandDomainIVareresponsiblefor
et al., 2014). In the root, direct measurement of auxin levels in dimerizationwithotherAux/IAAproteinsandheterodimerization
differentcelltypes,aswellasthebehaviorofauxinreporters,in- withARFproteins(Ulmasovetal.,1997a).
dicate that auxin levels range widely with anauxin maximum Important insights into the roles of the Aux/IAA genes came
around thequiescentcenteranddecreasing auxinlevelsmoving from genetic studies. Gain-of-function mutations in several of
proximallyfromthequiescentcenteraswellasdistallytowardthe these genes, including IAA1/AXR5, IAA3/SHY2, IAA7/AXR2,
roottip(Peterssonetal.,2009;Vernouxetal.,2011;Brunoudetal., IAA12/BDL,IAA14/SLR,IAA17/AXR3,IAA18/CRANE,IAA19/MSG,
2012;Bandetal.,2014).Recently,celltype-specificgenome-wide andIAA28,leadtostabilizationoftherespectiveproteinbecause
analysis of auxin responses in four different root cell types was theyarenotdegradedbySCFTIR1/AFBs(Rouseetal.,1998;Tianand
reported.Oneofthehighlightsofthisstudywasthatdifferentcell Reed, 1999; Nagpal et al., 2000; Rogg et al., 2001; Fukaki et al.,
typeshavebothdivergentandparalleltranscriptomicresponseto 2002;Tatematsuetal.,2004;Yangetal.,2004;Ueharaetal.,2008;
auxin(Bargmannetal.,2013).Thesestudieshighlightthepresence Ploenseetal.,2009).Thegain-of-functionmutationsareallwithin
ofanauxingradientintherootandthetranscriptionalcomplexity a stretchof fiveconserved amino acids in the dII.The mutations
ofauxinaction.Itispossiblethatdiverseauxincoreceptorsmaybe preventSCFTIR1/AFBsbindingresultinginstabilizationoftheprotein
necessarytointerpretthewiderangeofauxinlevelsthatexistin (Ramos et al., 2001; Dreher et al., 2006). On the other hand, the
theplant.Thus,thecoreceptormechanismcoulddramaticallyex- analysisofloss-of-functionmutantshassofarfailedtorevealro-
pandthedynamicrangeofauxinperception,potentiallyproviding bustmutantphenotypesinArabidopsis,suggestingextensivege-
apartialexplanationforhowauxincontrolssomanydifferentas- neticredundancyamongmembersofthefamily(Remingtonetal.,
pects of plant development (Calderón-Villalobos et al., 2012; Lee 2004;Overvoordeetal.,2005;reviewedinReed,2001).Thisisin
etal.,2014). contrasttothesituationintomato(Solanumlycopersicum)where
several loss-of-function alleles or antisense constructs produce
arobustphenotypesuggestingthatthereislessredundancyinthis
species (Wang et al., 2005; Chaabouni et al., 2009; Bassa et al.,
2012;Dengetal.,2012;Suetal.,2014).
The ARF proteins are B3-type transcription factors. Each of
the 23 ARFs in Arabidopsis have anN-terminal DNA binding do-
main(DBD)similartothatfoundinthetranscriptionfactorFUSCA3
(Ulmasov et al., 1995, 1997b; Luerssen et al., 1998; reviewed in
Liscum and Reed, 2002). The ARFs bind to auxin response ele-
ments(AuxREs),eachwiththecanonical6-bpTGTCTCsequence
inthepromotersofauxin-responsivegenes.Thefirstfourbasesin
the TGTCTC sequence are absolutely required for ARF binding,
while more variation is tolerated in the last two bases (Ulmasov
et al., 1997b, 1999a; Boer et al., 2014; reviewed in Guilfoyle and
Hagen,2007).
BasedonactivityinaprotoplastassaytheARFsaredivided
Figure 3. Different TIR1/AFB-AUX/1AA-ARF Modules May Regulate intoactivatorsandrepressors(reviewedinGuilfoyleandHagen,
DifferentDevelopmentalProcesses. 2012).ARF5,6,7,8,and19proteinshaveamiddleregionthatis
Gln (Q) rich and function as activators. All the rest, except for
SixTIR1/AFBcaninteractwiththe23differentAux/IAAscontainingthedIIto
form numerous coreceptor complexes. Each of the Aux/IAA may interact ARF23, have a middle region rich in serine, proline, or leucine/
with up to 19 ARFs containing Domains III/IV to regulate distinct sets of glycineandarethoughttoactasrepressors,althoughthishas
targetgenesthatcontroldifferentphysiologicalprocessesintheplant. notbeenexperimentallytestedforeverymemberofthisgroup.
SCFTIR1/AFB-BasedAuxinPerception 13
In addition, ARF3, 13, and 17 lack Domains III/IV. ARF23 con- studiesoftheAux/IAAproteins.Expressionofstabilizedforms
sists of a truncated DBD only. Although the ARFs have been of these proteins results in a strong auxin response defect.
classified as either activators or repressors, it is important to However,ifoneofthetwoPB1facesismutated,thisdefectis
notethattheirbehaviorintheplantmaybemuchmorecomplex. strongly ameliorated, implying that the formation of Aux/IAA
FortheactivatingARFs,aworkingmodelforARFregulationis multimersisrequiredforefficientrepression.Sofar,thiseffect
nowwellestablished(Figure1;reviewedinGuilfoyleandHagen, hasonlybeendemonstratedforIAA16,butseemslikelytobe
2007, 2012). At low auxin levels, these ARFs are bound to the general.Thesediscoveriesconstituteamajorrefinementofthe
Aux/IAA proteins, which recruit the TPL corepressor and other auxin-signaling model (Figure 1; Korasick et al., 2014; Nanao
associated chromatin modifying proteins via the EAR motif in etal.,2014).
DomainI,resultingintherepressionofauxin-responsivegenes Inadditiontointeractionsbetweenthemselves,theAux/IAAs
(Tiwari et al., 2001; Szemenyei et al., 2008). At higher auxin andARFshavealsobeenreportedtoregulateandberegulated
levels (Figure 1), Aux/IAAs are ubiquitinated and degraded via byothertranscriptionfactors.AMYBtranscriptionfactor,MYB77,
the 26S proteasome machinery, thus freeing ARFs to activate wasshowntointeractwiththeARF7proteinandcontributetoauxin-
expression of auxin responsive genes (Figure 1). Since the regulated transcription (Shin et al., 2007). In sunflower (Helianthus
phenotype of gain-of-function aux/iaa mutants is caused by annuus),HaIAA27wasshowntobindtotheheatshocktranscription
stabilizationoftherespectiveAux/IAAproteinsandconstitutive factorHaHSFA9andrepressitsactivityduringseeddevelopment.
repression ofARF proteins, loss-of-function ARF activator mu- AsinthecaseoftheARFs,auxinactedtorelieverepressionofthe
tantsshouldhaveasimilarphenotypetoAux/IAAgain-of-function HaHSFA9protein(Carrancoet al.,2010).In anotherrecentreport,
mutants.Thisisthecaseforseveralmutants,suchasiaa12/bdland phosphorylation of ARF7 and ARF19 by BRASSINOSTEROID IN-
arf5/mp, both of which have a rootless phenotype (Hardtke and SENSITIVE2 (BIN2) was shown to suppress their interaction with
Berleth,1998;Hamannetal.,1999;Weijersetal.,2006). Aux/IAAsandthisinturnenhancedtranscriptionofLATERALOR-
Recently,alarge-scaleanalysisofAux/IAAandARFsinterac- GANBOUNDARIESDOMAIN16(LBD16)andLBD29duringlateral
tionswasdoneusingsystemiclarge-scaleyeasttwo-hybridassays rootinitiation,independentofauxinperception(Choetal.,2014).
andbimolecularfluorescencecomplementationassays.Themajor Despitetheserecentadvances,ourunderstandingofhowthe
conclusionofthisstudywasthatAux/IAA-Aux/IAAandAux/IAA- ARFs work remains quite superficial compared with fungal and
activatorARFinteractionsarecommon,whereasinteractionsbe- animalsystems.Forexample,wearejustbeginningtolearnabout
tweenARFsorbetweenAux/IAAsandrepressorARFswereless thecoactivatorsandcorepressorsthatcollaboratewiththeARFsto
common(Vernouxetal.,2011).However,arecentstudyprovides regulate transcription. Similarly, the chromatin states associated
genetic evidence for an interaction between ARF9, characterized withARFfunctionareunknown.Finally,thefunctionandactivityof
as a repressor, and IAA10, suggesting either the function of the therepressorARFsispoorlyunderstood.
ARFsismorecomplexorthattheAux/IAAscaninteractwithre-
pressorARFsinvivo(Rademacheretal.,2012).
DEGRADATIONOFAux/IAAISCRUCIALFOR
Recent structural studies of ARFs have led to exciting new
AUXINACTION
insightintothemolecularfunctionoftheARFandAux/IAAproteins
(Boer et al., 2014; Korasick et al., 2014; Nanao et al., 2014). Be- Understanding how Aux/IAA proteins are degraded is a crucial
causetheARFproteinsreadilyformhomodimersthroughDomains step in unraveling how auxin triggers diverse developmental
III/IV,thisbecamethefocusofstudiesonARFinteraction.However responses.DomainIIoftheAux/IAAsisthoughttobetheprimary
DomainIII/IV-independentARFdimerizationwasreportedaslong determinant for degradation by SCFTIR1/AFB (Gray et al., 2001;
ago as 1999 (Ulmasov et al., 1999b). More recently, Boer et al. Ramosetal.,2001;Dreheretal.,2006).However,inadditiontothe
(2014)solvedthestructureoftheDNAbindingdomainsfromARF5 DomainIIdegronmotif,aconservedlysinebetweenDomainIand
anditsdistantparalogARF1incomplexwithagenericAuxREel- DomainIIcontributestoAux/IAAdegradation(Ouelletetal.,2001;
ementandshowedthattheDNAbindingdomainshomodimerizeto Dreheretal.,2006).Itisinterestingtonotethatthehalf-lifeofthe
generatecooperativeDNAbinding(Boeretal.,2014).Furthermore, Aux/IAAsvarieswidely.Thehalf-lifeofIAA7is;10min,whilethe
this study proposed that ARF1 and ARF5 differ in the spacing half-lifeofIAA28is80min,despitethefactthatthesetwoproteins
between adjacent binding sites, potentially contributing to ARF have an identical degron sequence. These results indicate that
specificity. determinants outside of Domain II also contribute to degradation
FurtherinsightwasgainedbystructuralstudiesoftheC-terminal rate.Ontheotherhand,IAA31,whichhasadegenerateDomainII,
domain of ARF5 (Nanao et al., 2014) and ARF7 (Korasick et al., withouttheconservedlysine,hasahalf-lifeof>20h,althoughthis
2014).ThisworkrevealedthatDomainsIIIandIV,presentinmost drops to ;4 h after auxin treatment. A small group of Aux/IAAs,
oftheAux/IAAandARFs,formaPhoxandBem1p(PB1)domain namely, IAA20, IAA30, and IAA32-34, do not have the classical
asfirstproposedbyGuilfoyleandHagen(2012).ThePB1domains Domain II, but overexpression of IAA20 and IAA30 show strong
provide both positive and negative electrostatic surfaces for di- auxin-related defects implying that these proteins repress auxin
rectional protein interaction (reviewed in Guilfoyle, 2015).Bio- regulatedtranscription(SatoandYamamoto,2008).
chemicalanalysisconfirmedthatamutationthataffectsoneor Recently, a synthetic biology approach has been applied to
the other of the surfaces in the ARF protein still permits dimeri- thestudyofauxinsignaling(Havensetal.,2012;Pierre-Jerome
zation withitselforanAux/IAAprotein, whereas an ARF protein etal.,2014).Byengineeringthecoreauxin-signalingpathwayinto
withsubstitutionsinbothfacesisunabletoformadimer(Korasick budding yeast, these workers developed a novel and powerful
etal.,2014;Nanaoetal.,2014).Additionalinsightwasgainedby platform for studies of the pathway. Using this system, they
14 ThePlantCell
confirmedthattheAux/IAAproteinsaredegradedatverydifferent
rates, but in addition, the rate is dependent on the TIR1/AFB
protein (Havens et al., 2012). More importantly, the system en-
abledthemtodefineaminimalauxinresponsecircuitsufficientto
recapitulateauxin-inducedtranscriptioninyeast.Bybuildingand
testingcircuitscomposedofdifferentAux/IAAandARFproteins,
they were able to show that the behavior of the circuit varied
significantlydepending on thecircuitcomponents.Furthermore,
circuits with multiple coexpressed Aux/IAAs displayed unique
behaviors that may be relevant during plant development. This
workprovidesanewapproachfordissectingauxinsignalingand
demonstrates the key role of Aux/IAAs in tuning the dynamic
patternofauxinresponse(Pierre-Jeromeetal.,2014).
Inarelatedstudy,Shimizu-MitaoandKakimoto(2014)tested
theauxin-dependentdegradationofallArabidopsisAux/IAAsin
combinationwithTIR1orAFBinyeast.TheyfoundthatTIR1and
AFB2,butnotAFB1,orAFB3-5wereeffectiveinAux/IAAdegra-
dation in the yeast system. All Aux/IAAs, except those lacking
DomainII(IAA20,IAA30,IAA32,andIAA34),weredegradedinan
auxin-dependentmanner.Asinearlierstudies(Calderón-Villalobos
et al., 2012),theeffective auxin concentration for Aux/IAA degra-
dation depended on the identity of both the Aux/IAA and TIR1/
AFB2protein(Shimizu-MitaoandKakimoto,2014).
Figure4. RegulationoftheTIR1/AFBPathway.
ARF-mediated regulation of the Aux/IAA genes constitutes a robust
REGULATORYLOOPSINAUXINSIGNALING
negative feedback loop. Other pathways may regulate transcription of
auxinresponsegenesinbothapositiveandnegativemanner.Forex-
Regulatorycomplexityisarecurringthemeinplantdevelopment,
ample, the cytokinin responsive transcription factor ARR1 promotes
soitisnotsurprisingthatfeedbackandregulatoryloopsexistinthe
transcriptionofIAA3intheroot,resultingindownregulationoftheARF
auxin-signalingpathway(Figure4).Themoststrikingoftheseisthe
targetPIN1.Thisresultsinachangeinauxindistributionthataffectscell
negative feedback loop generated by auxin-induced transcription differentiation(DelloIoioetal.,2008).Inaddition,otherpathwaysmay
oftheAux/IAAgenes.Clearlythisfeedbackloopwillresultinrapid act directly on the ARFs. For example, the BIN2 kinase regulates the
dampening of auxin response upon auxin treatment. However, interactionbetweenARF7andAux/IAAbydirectlyphosphorylatingthe
giventhatthekineticsofauxinregulationofAux/IAAsiscomplex, ARF(Choetal.,2014).
a complete understanding of this regulatory system will require
additionalexperimentsinconjunctionwithamodelingapproach.
Itislikelythatmanyadditionalregulatorynodesthatinvolvethe
Apart from the negative regulatory loop involving the Aux/
IAAs, members of the auxin efflux carrier PIN-FORMED (PIN) Aux/IAAsandARFwillbeidentifiedgoingforward(Figure4).
familywerealsoshowntobeundercontroloftheAux/IAAsand
ARFs(Vietenetal.,2005).Ascellularauxinlevelsrise,PINgene
THEEVOLUTIONARYHISTORYOFAUXINSIGNALING
expressionincreases,resultinginmoreauxineffluxandareduction
inauxinlevels(reviewedinAdamowskiandFriml,2015).Thus,this Colonization of land by plants was a major event in evolution.
regulatory circuit contributes to auxin homeostasis. Among the However,thetimeatwhichauxinsignalingemergedisnotclear
features of this regulation is a striking compensatory mechanism (reviewedinDeSmetandBeeckman,2011).Theauxin-signaling
thatmayacttostabilizeauxingradients.Inthissystem,thelossof pathwayisconservedinlandplants.GenesencodingAux/IAA,
aPINproteinresultsinanincreaseincellularauxinlevels.Thisin ARF, and TIR1 homologs are present within the genomes of
turn causes the ectopic expression of other PIN proteins, thus themossPhyscomitrellapatensandthelycophyteSelaginella
compensatingfortheoriginalPINdeficiency(Vietenetal.,2005).In moellendorffii(Lauetal.,2009;Paponovetal.,2009;reviewedin
addition, accumulation of auxin during de novo organ formation De Smetand Beeckman, 2011;Finet and Jaillais, 2012).In the
leadstorearrangementsinthesubcellularpolarlocalizationofPIN case of P. patens, genetic studies have shown that the mech-
auxintransporters.Thiseffectiscellspecific,independentofPIN anism of auxin signaling is very similar to that of angiosperms
transcription, and involves the Aux/IAA-ARF signaling pathway (Priggeetal.,2010;Lavyetal.,2012).Thepresenceofauxinin
(Saueretal.,2006). algal species has been reported, but the physiological signifi-
ThePINsalsofactorintoanotherauxin-dependentregulatory canceofthisisnotclear.InthecaseofChlorophyta,adivisionof
loopthataffectsbehaviorofcellsintherootmeristem.DelloIoio the green algae, no orthologs of TIR1/AFB, Aux/IAA, and ARFs
et al. (2008) showed that the cytokinin response factor ARR1 werefound(Paponovetal.,2009;reviewedinLauetal.,2009;De
activates transcription of the Aux/IAA gene SHY2/IAA3. The Smet and Beeckman, 2011; Finet and Jaillais, 2012). A recent
IAA3proteininturnrepressestranscriptionofPIN1resultingin reportofa draft genome sequence of thefilamentous terrestrial
achangeinauxindistributionthatpromotescelldifferentiation. alga Klebsormidium flaccidum indicates that this species lacks
SCFTIR1/AFB-BasedAuxinPerception 15
aTIR1-likeauxinreceptorbutdoeshaveotherauxin-relatedpro- phyllotaxy,lateralbranching,androotgrowth(Reinhardtetal.,2003;
teins such as ABP1, AUXIN RESISTANT1, and PIN (Hori et al., Jönsson et al., 2006; Shinohara et al., 2013; Band et al., 2014;
2014).ItisalsointerestingtonotethatmostoftheSCF-dependent Mähönenetal.,2014).Thisinsightfulapproachwillbecomeeven
planthormonesignalingcomponents,suchasTIR1,COI1,andGA morepowerfulasthemodelsbecomeincreasinglyparameterized
INSENSITIVEDWARF1,aremissinginK.flaccidumgenome(Hori byexperimentaldata.
etal.,2014).
FUTUREDIRECTIONS
USEOFAUXIN-INDUCIBLEDEGRONSASATOOLIN
Auxin plays a role almost every aspect of plant development.
ANIMALSYSTEMS
Although the general framework of auxin action has been estab-
In the last several years, SCFTIR1/AFB and the Aux/IAA proteins lished,thespecificelementsinvolvedineachdevelopmentalsignal
remaintobediscovered.BecausetheAux/IAAproteinsarecentral
haveprovidedthebasisforanovelmethodofregulatingprotein
and dynamicregulatorsofauxinsignaling,furtherstudiesoftheir
levels in non-plant species. This system is called the auxin-
role in auxin perception, their interactions with the ARF proteins,
inducibledegronsystem(Nishimuraetal.,2009;Hollandetal.,
and their ultimate effect on the transcriptional output will be an
2012;Kankeetal.,2012;Farretal.,2014;NishimuraandKanemaki,
important way forward. The ability of the Aux/IAAs to form auxin
2014;Samejimaetal.,2014).AlleukaryotespossessSCFubiquitin
coreceptorswithTIR1/AFBsfurtherexpandsthedynamicrangeof
ligases, and the architecture of Arabidopsis TIR1, including the
F-box domain,is sufficiently conserved to allow assembly into an auxin perception. In addition, recent exciting studies show that
SCFTIR1complexinyeastandanimals.Whenaproteinofinterestis ABP1functionsasacellsurface-basedauxinreceptor(Chenetal.,
2001;Chenetal.,2012;Xuetal.,2014).Howauxinperceptionat
fusedtotheAux/IAAdegron,calledtheauxin-induceddegroninthis
thecellsurfaceandinthenucleusarecoordinatedisanimportant
context,andintroducedintoyeastcellsexpressingTIR1,thetagged
outstandingquestion(Tromasetal.,2013;Paqueetal.,2014).Fi-
proteinwillbedegradedinanauxin-dependentmanner(Nishimura
nally,theeffectsofauxinoncellcycleregulationmaybemediated
et al., 2009). The system provides a rapid and, more importantly,
in part by SCFSKP2A, which binds to auxin in a cell-free assay
reversiblewaytoregulateproteinlevels.Theauxin-inducibledegron
(Juradoetal.,2010).Discoveringhowinformationfromthesedif-
systemhasbeenadaptedforanumberofvertebratecelltypesand
ferent perception mechanisms is integrated during plant de-
isprovingtobeausefultoolforawiderangeofstudies
velopmentwillbeanexcitingchallengeforthefuture.
NEWTECHNOLOGIESTODISSECTTHE
ACKNOWLEDGMENTS
AUXIN-SIGNALINGPATHWAY
M.S.andR.B.thankRebeccaDicksteinforcriticallyreadingthearticle
Asmentionedabove,thereappearstobeextensiveredundancy
andforhelpfulsuggestions.Thisworkwassupportedbygrantsfromthe
inboththeARFandAux/IAAfamiliesofproteins.Consequently,
HowardHughesMedicalInstitute,theGordonandBettyMooreFounda-
theroleofeachAux/IAAandARFproteinhasnotbeendefined
tion,andtheNationalInstitutesofHealth(GrantGM43644).
(Okushima et al., 2005; Overvoorde et al., 2005). Because the
creationofhigherordermutants bygeneticcrossingisatime-
consuming process, the emergence of precise genome editing AUTHORCONTRIBUTIONS
tools like CLUSTERED REGULARLY INTERSPACED SHORT
Allauthorscontributedtowritingthearticle.
PALINDROMICREPEAT(CRISPR)-CRISPRASSOCIATEDSYSTEM
(Cas9)isawelcomedevelopment(Congetal.,2013;Malietal.,
2013). The CRISPR-Cas9 system has been successfully used
Received October 29, 2014; revised December 14, 2014; accepted
to create multiple mutants in a mouse model in a short time
December26,2014;publishedJanuary20,2015.
(Wang et al., 2013). Several reports of successful precise ge-
nome editing in Arabidopsis and other plants using CRISPR-
Cas9areverypromising(Lietal.,2013;Fengetal.,2014;Jiang
REFERENCES
etal.,2014;Schimletal.,2014;reviewedinLozano-Justeand
Cutler, 2014; Hyun et al., 2015). The CRISPR-Cas9 system Abel, S., and Theologis, A. (1996). Early genes and auxin action.
should decrease the amount of time it takes to generate the PlantPhysiol.111:9–17.
higherordermutantsrequiredforanalysisofAux/IAAandARF Adamowski, M., and Friml, J. (2015). PIN-dependent auxin transport:
genefamilies. action,regulation,andevolution.PlantCell27:20–32.
Overthelastthreedecadesgenetics,biochemistryandmolec- Arteca,R.(1996).PlantGrowthSubstances:PrinciplesandApplica-
tions.(NewYork:Chapman&Hall).
ular approaches have provided an explanation for how auxin
Band, L.R.,etal. (2014). Systems analysis of auxin transportin the
controlsmanyaspectsofplantgrowth.However,partlybecauseof
Arabidopsisrootapex.PlantCell26:862–875.
thecomplexityofauxinbiology,ourviewofthisregulatorysystem
Bargmann,B.O.R.,Vanneste,S.,Krouk,G.,Nawy,T.,Efroni,I.,Shani,E.,
remainsincomplete.Amorecompleteunderstandingwillcertainly
Choe,G.,Friml,J.,Bergmann,D.C.,Estelle,M.,andBirnbaum,K.D.
require the application of systems level and computational ap- (2013).Amapofcelltype-specificauxinresponses.Mol.Syst.Biol.9:688.
proaches.Severalgroupshavedevelopedinstructivemathematical Bassa,C.,Mila,I.,Bouzayen,M.,andAudran-Delalande,C.(2012).
models that help to explain several auxin-related events like Phenotypes associated with down-regulation of Sl-IAA27 support
16 ThePlantCell
functionaldiversityamongAux/IAAfamilymembersintomato.Plant Deng,W.,Yang,Y.,Ren,Z.,Audran-Delalande,C.,Mila,I.,Wang,
CellPhysiol.53:1583–1595. X.,Song,H.,Hu,Y.,Bouzayen,M.,andLi,Z.(2012).Thetomato
Benjamins, R., and Scheres, B. (2008). Auxin: the looping star in SlIAA15 is involved in trichome formation and axillary shoot de-
plantdevelopment.Annu.Rev.PlantBiol.59:443–465. velopment.NewPhytol.194:379–390.
Benková,E.,Michniewicz,M.,Sauer,M.,Teichmann,T.,Seifertová, De Smet, I., and Beeckman, T. (2011). Asymmetric cell division in
D., Jürgens, G., and Friml, J. (2003). Local, efflux-dependent auxin landplantsandalgae:thedrivingforcefordifferentiation.Nat.Rev.
gradients as a common module for plant organ formation. Cell 115: Mol.CellBiol.12:177–188.
591–602. DeSmet,I.,etal.(2010).Bimodularauxinresponsecontrolsorgan-
Boer, D.R., Freire-Rios, A., van den Berg, W.A.M., Saaki, T., ogenesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 107: 2705–
Manfield, I.W., Kepinski, S., López-Vidrieo, I., Franco-Zorrilla, 2710.
J.M.,deVries,S.C.,Solano,R.,Weijers,D.,andColl,M.(2014). Dharmasiri,N.,Dharmasiri,S.,andEstelle,M.(2005a).TheF-box
StructuralbasisforDNAbindingspecificitybytheauxin-dependent proteinTIR1isanauxinreceptor.Nature435:441–445.
ARFtranscriptionfactors.Cell156:577–589. Dharmasiri,N.,Dharmasiri,S.,Weijers,D.,Lechner,E.,Yamada,
Brunoud, G., Wells, D.M., Oliva, M., Larrieu, A., Mirabet, V., M., Hobbie, L., Ehrismann, J.S., Jürgens, G., and Estelle, M.
Burrow, A.H., Beeckman, T., Kepinski, S., Traas, J., Bennett, (2005b). Plant development is regulated by a family of auxin re-
M.J., and Vernoux, T. (2012). A novel sensor to map auxin re- ceptorFboxproteins.Dev.Cell9:109–119.
sponseanddistributionathighspatio-temporalresolution.Nature Dreher, K.A., Brown, J., Saw, R.E., and Callis, J. (2006). The Ara-
482:103–106. bidopsisAux/IAAproteinfamilyhasdiversifiedindegradationand
Calderón Villalobos, L.I., et al. (2012). A combinatorial TIR1/AFB- auxinresponsiveness.PlantCell18:699–714.
Aux/IAA co-receptor system for differential sensing of auxin. Nat. Farr, C.J., Antoniou-Kourounioti, M., Mimmack, M.L., Volkov, A.,
Chem.Biol.8:477–485. and Porter, A.C. (2014). The a isoform of topoisomerase II is re-
Calderon-Villalobos,L.I.,Tan,X.,Zheng,N.,andEstelle,M.(2010). quired for hypercompaction of mitotic chromosomes in human
Auxinperception—structuralinsights.ColdSpringHarb.Perspect. cells.NucleicAcidsRes.42:4414–4426.
Biol.2:a005546. Feng, Z., et al. (2014). Multigeneration analysis reveals the in-
Carranco, R., Espinosa, J.M., Prieto-Dapena, P., Almoguera, C., heritance, specificity, and patterns of CRISPR/Cas-induced gene
andJordano,J.(2010).Repressionbyanauxin/indoleaceticacid modificationsinArabidopsis.Proc.Natl.Acad.Sci.USA111:4632–
protein connects auxin signaling with heat shock factor-mediated 4637.
seedlongevity.Proc.Natl.Acad.Sci.USA107:21908–21913. Finet,C.,andJaillais,Y.(2012).Auxology:whenauxinmeetsplant
Causier, B., Ashworth, M., Guo, W., and Davies, B. (2012). The evo-devo.Dev.Biol.369: 19–31.
TOPLESS interactome: a framework for gene repression in Arabi- Firn, R.D., and Digby, J.(1980). The establishment of tropic curva-
dopsis.PlantPhysiol.158:423–438. turesinplants.Annu.Rev.PlantPhysiol.31:131–148.
Chaabouni,S.,Jones,B.,Delalande,C.,Wang,H.,Li,Z.,Mila,I., Fukaki,H.,Tameda,S.,Masuda,H.,andTasaka,M.(2002).Lateral
Frasse, P., Latché, A., Pech, J.-C., and Bouzayen, M. (2009). root formation is blocked by a gain-of-function mutation in the
Sl-IAA3,atomatoAux/IAAatthecrossroadsofauxinandethylenesig- SOLITARY-ROOT/IAA14geneofArabidopsis.PlantJ.29:153–168.
nallinginvolvedindifferentialgrowth.J.Exp.Bot.60:1349–1362. Gilkerson,J.,Hu,J.,Brown,J.,Jones,A.,Sun,T.P.,andCallis,J.
Chapman, E.J., and Estelle, M. (2009). Mechanism of auxin-regu- (2009).Isolationandcharacterizationofcul1-7,arecessivealleleof
latedgeneexpressioninplants.Annu.Rev.Genet.43:265–285. CULLIN1thatdisruptsSCFfunctionattheCterminusofCUL1in
Chen, J.-G., Ullah, H., Young, J.C., Sussman, M.R., and Jones, Arabidopsisthaliana.Genetics181:945–963.
A.M.(2001).ABP1isrequiredfororganizedcellelongationanddivision Gray, W.M., del Pozo, J.C., Walker, L., Hobbie, L., Risseeuw, E.,
inArabidopsisembryogenesis.GenesDev.15:902–911. Banks,T.,Crosby,W.L.,Yang,M.,Ma,H.,andEstelle,M.(1999).
Chen, X., Naramoto, S., Robert, S., Tejos, R., Löfke, C., Lin, D., IdentificationofanSCFubiquitin-ligasecomplexrequiredforauxin
Yang,Z.,andFriml,J.(2012).ABP1andROP6GTPasesignaling responseinArabidopsisthaliana.GenesDev.13:1678–1691.
regulateclathrin-mediatedendocytosisinArabidopsisroots.Curr. Gray, W.M., Hellmann, H., Dharmasiri, S., and Estelle, M. (2002).
Biol.22:1326–1332. RoleoftheArabidopsisRING-H2proteinRBX1inRUBmodification
Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J.M., andSCFfunction.PlantCell14:2137–2144.
Lorenzo, O., García-Casado, G., López-Vidriero, I., Lozano, F.M., Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M.
Ponce,M.R.,Micol,J.L.,andSolano,R.(2007).TheJAZfamilyofre- (2001).AuxinregulatesSCF(TIR1)-dependentdegradationofAUX/
pressorsisthemissinglinkinjasmonatesignalling.Nature448:666–671. IAAproteins.Nature414:271–276.
Cho, H., et al. (2014). A secreted peptide acts on BIN2-mediated Greenham,K.,Santner,A.,Castillejo,C.,Mooney,S.,Sairanen,I.,
phosphorylationofARFstopotentiateauxinresponseduringlateral Ljung, K., and Estelle, M. (2011). The AFB4 auxin receptor is
rootdevelopment.Nat.CellBiol.16:66–76. anegativeregulatorofauxinsignalinginseedlings.Curr.Biol.21:
Cobb, A.H., and Reade, J.P.H. (2010). Herbicides and Plant Physi- 520–525.
ology.(Hoboken,NJ:Wiley-Blackwell). Guilfoyle,T.J.(2015).ThePB1domaininauxinresponsefactorand
Cong,L.,Ran, F.A.,Cox, D., Lin, S.,Barretto, R., Habib, N., Hsu, Aux/IAAproteins:aversatileproteininteractionmoduleintheauxin
P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. (2013). response.PlantCell27:33–43.
MultiplexgenomeengineeringusingCRISPR/Cassystems.Science Guilfoyle,T.J.,andHagen,G.(2007).Auxinresponsefactors.Curr.
339:819–823. Opin.PlantBiol.10:453–460.
Darwin, C., and Darwin, F.E. (1880). The Power of Movement in Guilfoyle,T.J.,andHagen,G.(2012).GettingagraspondomainIII/IV
Plants.(NewYork:DAppletonandCo.). responsible for Auxin Response Factor-IAA protein interactions.
DelloIoio,R.,Nakamura,K.,Moubayidin,L.,Perilli,S.,Taniguchi, PlantSci.190:82–88.
M., Morita, M.T., Aoyama, T., Costantino, P., and Sabatini, S. Haagen-Smit, A.J., Dandliker, W.B., Wittwer, S.H., and Murneek,
(2008).Ageneticframeworkforthecontrolofcelldivisionanddif- A.E. (1946). Isolation of 3-indoleacetic acid from immature corn
ferentiationintherootmeristem.Science322:1380–1384. kernels.Am.J.Bot.33:118–120.
SCFTIR1/AFB-BasedAuxinPerception 17
Hagen,G.,andGuilfoyle,T.(2002).Auxin-responsivegeneexpres- Lau, S., Shao, N., Bock, R., Jürgens, G., and De Smet, I. (2009).
sion:genes,promotersandregulatoryfactors.PlantMol.Biol.49: Auxinsignalinginalgallineages:factormyth?TrendsPlantSci.14:
373–385. 182–188.
Hamann,T., Mayer, U., and Jürgens, G. (1999). The auxin-insensitive Lavy,M.,Prigge,M.J.,Tigyi,K.,andEstelle,M.(2012).Thecyclo-
bodenlosmutationaffectsprimaryrootformationandapical-basal philin DIAGEOTROPICA has a conserved role in auxin signaling.
patterning in the Arabidopsis embryo. Development 126: 1387– Development139:1115–1124.
1395. Lee, S., Sundaram, S., Armitage, L., Evans, J.P., Hawkes, T.,
Hardtke, C.S., and Berleth, T. (1998). The Arabidopsis gene MO- Kepinski, S., Ferro, N., and Napier, R.M. (2014). Defining bind-
NOPTEROSencodesatranscriptionfactormediatingembryoaxis ingefficiencyandspecificityofauxinsforSCF(TIR1/AFB)-Aux/IAA
formationandvasculardevelopment.EMBOJ.17:1405–1411. co-receptorcomplexformation.ACSChem.Biol.9:673–682.
Havens, K.A., Guseman, J.M., Jang, S.S., Pierre-Jerome, E., Li, J., et al. (2005). Arabidopsis H+-PPase AVP1 regulates auxin-
Bolten, N., Klavins, E., and Nemhauser, J.L. (2012). A synthetic mediatedorgandevelopment.Science310:121–125.
approach reveals extensive tunability of auxin signaling. Plant Li,J.F.,Norville,J.E.,Aach,J.,McCormack,M.,Zhang,D.,Bush,
Physiol.160:135–142. J.,Church,G.M.,andSheen,J.(2013).Multiplexandhomologous
Hellmann,H.,Hobbie,L.,Chapman,A.,Dharmasiri,S.,Dharmasiri, recombination-mediated genome editing in Arabidopsis and Nicotiana
N.,delPozo,C.,Reinhardt,D.,andEstelle,M.(2003).Arabidopsis benthamianausingguideRNAandCas9.Nat.Biotechnol.31:688–691.
AXR6encodesCUL1implicatingSCFE3ligasesinauxinregulation Liscum, E., and Reed, J.W. (2002). Genetics of Aux/IAA and ARF
ofembryogenesis.EMBOJ.22:3314–3325. actioninplantgrowthanddevelopment.PlantMol.Biol.49:387–400.
Hertel,R.,Thomson,K.-S.,andRusso,V.E.A.(1972).In-vitroauxin Long, J.A., Ohno, C., Smith, Z.R., and Meyerowitz, E.M.(2006).
binding to particulate cell fractions from corn coleoptiles. Planta TOPLESSregulatesapicalembryonicfateinArabidopsis.Science
107:325–340. 312:1520–1523.
Holland,A.J.,Fachinetti,D.,Han,J.S.,andCleveland,D.W.(2012). Lozano-Juste,J.,andCutler,S.R.(2014).Plantgenomeengineering
Inducible,reversiblesystemfortherapidandcompletedegradation infullbloom.TrendsPlantSci.19:284–287.
of proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 109: Luerssen,H.,Kirik,V.,Herrmann,P.,andMiséra,S.(1998).FUS-
E3350–E3357. CA3encodesaproteinwithaconservedVP1/AB13-likeB3domain
Hori,K.,etal.(2014).Klebsormidiumflaccidumgenomerevealspri- whichisoffunctionalimportancefortheregulationofseedmatu-
maryfactorsforplantterrestrialadaptation.Nat.Commun.5:3978. rationinArabidopsisthaliana.PlantJ.15: 755–764.
Hyun,Y.,Kim,J.,Cho,S.W.,Choi,Y.,Kim,J.S.,andCoupland,G. Mähönen,A.P.,tenTusscher,K.,Siligato,R.,Smetana,O.,Díaz-
(2015).Site-directedmutagenesisinArabidopsisthalianausingdi- Triviño,S.,Salojärvi,J.,Wachsman,G.,Prasad,K.,Heidstra,R.,
vidingtissue-targetedRGENoftheCRISPR/Cassystemtogener- andScheres,B.(2014).PLETHORAgradientformationmechanism
ateheritablenullalleles.Planta241:271–284. separatesauxinresponses.Nature515:125–129.
Jiang,W.,Yang,B.,andWeeks,D.P.(2014).EfficientCRISPR/Cas9- Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E.,
mediated gene editing in Arabidopsis thaliana and inheritance of Norville, J.E., and Church, G.M. (2013). RNA-guided human ge-
modifiedgenesintheT2andT3generations.PLoSONE9:e99225. nomeengineeringviaCas9.Science339:823–826.
Jones,A.M.,Im,K.H.,Savka,M.A.,Wu,M.J.,DeWitt,N.G.,Shillito, Mauseth, J.D. (1991). Botany: An Introduction to Plant Biology.
R.,andBinns,A.N.(1998).Auxin-dependentcellexpansionmedi- (Philadelphia:Saunders).
atedbyoverexpressedauxin-bindingprotein1.Science282:1114– Mockaitis, K., and Estelle, M. (2008). Auxin receptors and plant
1117. development:anewsignalingparadigm.Annu.Rev.CellDev.Biol.
Jönsson, H., Heisler, M.G., Shapiro, B.E., Meyerowitz, E.M., and 24:55–80.
Mjolsness,E.(2006).Anauxin-drivenpolarizedtransportmodelfor Moon, J., Zhao, Y., Dai, X., Zhang, W., Gray, W.M., Huq, E., and
phyllotaxis.Proc.Natl.Acad.Sci.USA103:1633–1638. Estelle,M.(2007).AnewCULLIN1mutanthasalteredresponses
Jurado,S.,Abraham,Z.,Manzano,C.,López-Torrejón,G.,Pacios, tohormonesandlightinArabidopsis.PlantPhysiol.143:684–696.
L.F.,andDelPozo,J.C.(2010).TheArabidopsiscellcycleF-box Nagpal, P., Walker, L.M., Young, J.C., Sonawala, A., Timpte, C.,
proteinSKP2Abindstoauxin.PlantCell22:3891–3904. Estelle,M.,andReed,J.W.(2000).AXR2encodesamemberofthe
Jürgens,G.(1995).Axisformationinplantembryogenesis:cuesand Aux/IAAproteinfamily.PlantPhysiol.123:563–574.
clues.Cell81:467–470. Nanao, M.H., et al. (2014). Structural basis for oligomerization of
Kanke, M., Kodama, Y., Takahashi, T.S., Nakagawa, T., and auxintranscriptionalregulators.Nat.Commun.5:3617.
Masukata,H.(2012).Mcm10playsanessentialroleinoriginDNA Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T., and
unwinding after loading of the CMG components. EMBO J. 31: Kanemaki,M.(2009).Anauxin-baseddegronsystemfortherapid
2182–2194. depletionofproteinsinnonplantcells.Nat.Methods6:917–922.
Katsir,L.,Chung,H.S.,Koo,A.J.K.,andHowe,G.A.(2008).Jasm- Nishimura,K.,andKanemaki,M.(2014).Rapiddepletionofbudding
onatesignaling:aconservedmechanismofhormonesensing.Curr. yeast proteins via the fusion of an auxin-inducible degron (AID).
Opin.PlantBiol.11:428–435. Curr.Protoc.CellBiol.64:20.9.1–20.9.16.
Kazan, K., and Manners, J.M. (2009). Linking development to de- Okushima,Y.,etal.(2005).FunctionalgenomicanalysisoftheAUXIN
fense: auxin in plant-pathogen interactions. Trends Plant Sci. 14: RESPONSEFACTORgenefamilymembersinArabidopsisthaliana:
373–382. uniqueandoverlappingfunctionsofARF7andARF19.PlantCell17:
Kepinski, S., and Leyser, O. (2005). The Arabidopsis F-box protein 444–463.
TIR1isanauxinreceptor.Nature435:446–451. Ouellet,F.,Overvoorde,P.J.,andTheologis,A.(2001).IAA17/AXR3:
Korasick,D.A.,Westfall,C.S.,Lee,S.G.,Nanao,M.H.,Dumas,R., biochemicalinsightintoanauxinmutantphenotype.PlantCell13:
Hagen, G., Guilfoyle, T.J., Jez, J.M., and Strader, L.C. (2014). 829–841.
MolecularbasisforAUXINRESPONSEFACTORproteininteraction Overvoorde, P.J., et al. (2005). Functional genomic analysis of the
andthecontrolofauxinresponserepression.Proc.Natl.Acad.Sci. AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabi-
USA111:5427–5432. dopsisthaliana.PlantCell17:3282–3300.
18 ThePlantCell
Paponov, I.A., Teale, W., Lang, D., Paponov, M., Reski, R., and Scheres, B. (1999). An auxin-dependent distal organizer of
Rensing, S.A., and Palme, K. (2009). The evolution of nuclear patternandpolarityintheArabidopsisroot.Cell99:463–472.
auxinsignalling.BMCEvol.Biol.9:126. Samejima,K.,Ogawa,H.,Ageichik,A.V.,Peterson,K.L.,Kaufmann,S.
Paque,S.,Mouille,G.,Grandont,L.,Alabadí,D.,Gaertner,C.,Goyallon, H.,Kanemaki,M.T.,andEarnshaw,W.C.(2014).Auxin-inducedrapid
A.,Muller,P.,Primard-Brisset,C.,Sormani,R.,Blázquez,M.A.,and degradation of Inhibitor of Caspase Activated DNase (ICAD) induces
Perrot-Rechenmann,C.(2014).AUXINBINDINGPROTEIN1linkscell apoptoticDNAfragmentation,caspaseactivationandcelldeath.J.Biol.
wallremodeling,auxinsignaling,andcellexpansioninArabidopsis.Plant Chem.289:31617–31623.
Cell26:280–295. Salisbury,F.B.,andRoss,C.W.(1992).PlantPhysiology.(Belmont,
Parry,G.,Calderon-Villalobos,L.I.,Prigge,M.,Peret,B.,Dharmasiri, CA:Wadsworth).
S., Itoh, H., Lechner, E., Gray, W.M., Bennett, M., and Estelle, M. Sato, A., and Yamamoto, K.T. (2008). Overexpression of the non-
(2009).ComplexregulationoftheTIR1/AFBfamilyofauxinreceptors. canonicalAux/IAAgenescausesauxin-relatedaberrantphenotypes
Proc.Natl.Acad.Sci.USA106:22540–22545. inArabidopsis.Physiol.Plant.133:397–405.
Pérez, A.C., and Goossens, A. (2013). Jasmonate signalling: Sauer, M., Balla, J., Luschnig, C., Wisniewska, J., Reinöhl, V.,
acopycatofauxinsignalling?PlantCellEnviron.36:2071–2084. Friml, J., and Benková, E. (2006). Canalization of auxin flow by
Petersson, S.V., Johansson, A.I., Kowalczyk, M., Makoveychuk, Aux/IAA-ARF-dependentfeedbackregulationofPINpolarity.Genes
A.,Wang,J.Y.,Moritz,T.,Grebe,M.,Benfey,P.N.,Sandberg,G., Dev.20:2902–2911.
andLjung,K.(2009).AnauxingradientandmaximumintheAra- Schiml, S., Fauser, F., and Puchta, H. (2014). The CRISPR/Cas
bidopsisrootapexshownbyhigh-resolutioncell-specificanalysis systemcanbeusedasnucleaseforinplantagenetargetingandas
ofIAAdistributionandsynthesis.PlantCell21:1659–1668. pairednickasesfordirectedmutagenesisinArabidopsisresultingin
Pierre-Jerome,E.,Jang,S.S.,Havens,K.A.,Nemhauser,J.L.,and heritableprogeny.PlantJ.80:1139–1150.
Klavins,E.(2014).Recapitulationoftheforwardnuclearauxinre- Sheard,L.B.,etal.(2010).Jasmonateperceptionbyinositol-phosphate-
sponse pathway in yeast. Proc. Natl. Acad. Sci. USA 111: 9407– potentiatedCOI1-JAZco-receptor.Nature468:400–405.
9412. Shimizu-Mitao,Y.,andKakimoto,T.(2014).Auxinsensitivitiesofall
Ploense,S.E.,Wu,M.F.,Nagpal,P.,andReed,J.W.(2009).Again- Arabidopsis Aux/IAAs for degradation in the presence of every
of-function mutation inIAA18 alters Arabidopsis embryonic apical TIR1/AFB.PlantCellPhysiol.55:1450–1459.
patterning.Development136:1509–1517. Shin, R., Burch, A.Y., Huppert, K.A., Tiwari, S.B., Murphy, A.S.,
Prigge, M.J., Lavy, M., Ashton, N.W., and Estelle, M.(2010). Guilfoyle, T.J., and Schachtman, D.P. (2007). The Arabidopsis
Physcomitrella patens auxin-resistant mutants affect conserved transcription factor MYB77 modulates auxin signal transduction.
elementsofanauxin-signalingpathway.Curr.Biol.20:1907–1912. PlantCell19:2440–2453.
Rademacher,E.H.,Lokerse,A.S.,Schlereth,A.,Llavata-Peris,C.I., Shinohara,N.,Taylor,C.,andLeyser,O.(2013).Strigolactonecan
Bayer,M.,Kientz,M.,FreireRios,A.,Borst,J.W.,Lukowitz,W., promoteorinhibitshootbranchingbytriggeringrapiddepletionof
Jürgens,G.,andWeijers,D.(2012).Differentauxinresponsemachineries theauxineffluxproteinPIN1fromtheplasmamembrane.PLoSBiol.
controldistinctcellfatesintheearlyplantembryo.Dev.Cell17:211–222. 11:e1001474.
Ramos, J.A., Zenser, N., Leyser, O., and Callis, J. (2001). Rapid Skaar,J.R.,Pagan,J.K.,andPagano,M. (2013).Mechanismsand
degradationofauxin/indoleaceticacidproteinsrequiresconserved functionofsubstraterecruitmentbyF-boxproteins.Nat.Rev.Mol.
aminoacidsofdomainIIandisproteasomedependent.PlantCell CellBiol.14:369–381.
13:2349–2360. Sorefan,K.,Girin,T.,Liljegren,S.J.,Ljung,K.,Robles,P.,Galván-
Raven, P.H., Evert, R.F., and Eichhorn, S.E. (1992). Biology of Ampudia, C.S., Offringa, R., Friml, J., Yanofsky, M.F., and
Plants,5thed.(NewYork:WorthPublishers). Østergaard, L. (2009). A regulated auxin minimum is required for
Reed,J.W.(2001).RolesandactivitiesofAux/IAAproteinsinArabi- seeddispersalinArabidopsis.Nature459:583–586.
dopsis.TrendsPlantSci.6:420–425. Sterling,T.M.,andHall,J.C.(1997).Mechanismofactionofnatural
Reinhardt, D., Mandel, T., and Kuhlemeier, C. (2000). Auxin regu- auxinsandtheauxinicherbicides.InHerbicideActivity:Toxicology,
latestheinitiationandradialpositionofplantlateralorgans.Plant Biochemistry, and Molecular Biology, R.M. Roe, J.D. Burton, and
Cell12:507–518. R.J.Kuhr,eds(Amsterdam:IOSPress),pp.111–141.
Reinhardt,D.,Pesce,E.-R.,Stieger,P.,Mandel,T.,Baltensperger, Su,L.,Bassa,C.,Audran,C.,Mila,I.,Cheniclet,C.,Chevalier,C.,
K., Bennett, M., Traas, J., Friml, J., and Kuhlemeier, C.(2003). Bouzayen, M., Roustan, J.P., and Chervin, C. (2014). The auxin
Regulationofphyllotaxisbypolarauxintransport.Nature426:255– Sl-IAA17 transcriptional repressor controls fruit size via the regu-
260. lation of endoreduplication-related cellexpansion. PlantCell Physiol.
Remington,D.L.,Vision,T.J.,Guilfoyle,T.J.,andReed,J.W.(2004). 55:1969–1976.
ContrastingmodesofdiversificationintheAux/IAAandARFgene Szemenyei, H., Hannon, M., and Long, J.A. (2008). TOPLESS me-
families.PlantPhysiol.135:1738–1752. diates auxin-dependent transcriptional repression during Arabi-
Rogg, L.E., Lasswell, J., and Bartel, B. (2001). A gain-of-function dopsisembryogenesis.Science319:1384–1386.
mutationinIAA28suppresseslateralrootdevelopment.PlantCell Tan,X.,Calderon-Villalobos,L.I.,Sharon,M.,Zheng,C.,Robinson,
13:465–480. C.V.,Estelle,M.,andZheng,N.(2007).Mechanismofauxinper-
Rouse, D., Mackay, P., Stirnberg, P., Estelle, M., and Leyser, O. ceptionbytheTIR1ubiquitinligase.Nature446:640–645.
(1998). Changes in auxin response from mutations in an AUX/IAA Tatematsu, K., Kumagai, S., Muto, H., Sato, A., Watahiki, M.K.,
gene.Science279:1371–1373. Harper, R.M., Liscum, E., and Yamamoto, K.T. (2004). MASSU-
Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J., and GU2encodesAux/IAA19,anauxin-regulatedproteinthatfunctions
Estelle, M. (1998). The TIR1 protein of Arabidopsis functions in together with the transcriptional activator NPH4/ARF7 to regulate
auxin response and is related to human SKP2 and yeast grr1p. differentialgrowthresponsesofhypocotylandformationoflateral
GenesDev.12:198–207. rootsinArabidopsisthaliana.PlantCell16:379–393.
Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Thimman, K.V. (1977). Hormone Action in the Whole Life of Plants.
Malamy,J., Benfey,P.,Leyser,O.,Bechtold, N., Weisbeek,P., (Amherst,MA:UniversityofMassachusettsPress).
Description:Auxin regulates a vast array of growth and developmental processes throughout the life cycle of plants. Auxin responses are highly context dependent and can involve changes in cell division, cell expansion, and cell fate. The complexity of the auxin response is illustrated by the recent finding tha