Table Of ContentSanta Clara University
Scholar Commons
Interdisciplinary Design Senior Theses Engineering Senior Theses
6-10-2016
RSL Rover
Patrick Barone
Santa Clara University
Giovanni Briggs
Santa Clara University
Aaron Burns
Santa Clara University
Hesham Naja
Santa Clara University
Zoe Demertzis
Santa Clara University
Follow this and additional works at:http://scholarcommons.scu.edu/idp_senior
Part of theComputer Engineering Commons, and theMechanical Engineering Commons
Recommended Citation
Barone, Patrick; Briggs, Giovanni; Burns, Aaron; Naja, Hesham; and Demertzis, Zoe, "RSL Rover" (2016).Interdisciplinary Design
Senior Theses.Paper 24.
This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in
Interdisciplinary Design Senior Theses by an authorized administrator of Scholar Commons. For more information, please [email protected].
RSL ROVER
By
Patrick Barone, Giovanni Briggs, Aaron Burns,
Zoe Demertzis, Hesham Naja
SENIOR DESIGN PROJECT REPORT
Submitted to
the Departments of Computer Science and Engineering and Mechanical Engineering
of
SANTA CLARA UNIVERSITY
in Partial Fulfillment of the Requirements
for the degree of
Bachelor of Science in Computer Science and Engineering and Mechanical Engineering
Santa Clara, California
Spring 2016
RSL Rover
Patrick Barone, Giovanni Briggs, Aaron Burns,
Hesham Naja, Zoe Demertzis
Departments of Computer and Mechanical Engineering
Santa Clara University
2016
ABSTRACT
The goal of this project was to design and implement an unmanned
vehicle that can assess the air quality and general state of a post-fire
environment. To do this, we equipped Santa Clara University’s Po-
laris 6x6 Ranger with appropriate sensors and cameras to determine
how safe the environment is for humans to enter. We also used GPS
and laser scans to generate a 3D map that operators can use to de-
fine certain zones as particularly dangerous. Finally, we incorporated
partially-autonomous sensing capabilities that will allow the operator
to easily drive the vehicle. The result was a rugged, advanced, and
intuitive vehicle that can be used to protect fire responders from any
lingering hazards during the investigation of a post-fire environment.
This vehicle is accompanied by a powerful operating system and local-
ization techniques that will allow any future research groups to help
this vehicle evolve into a fully autonomous system.
iii
Contents
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Vehicle Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Systems Level Design 8
2.1 Customer Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Key Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 System Level Sketch and Use Cases . . . . . . . . . . . . . . . . . . . 10
2.4 Functional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Benchmarking Results . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 System Level Issues, Trade-off Analysis . . . . . . . . . . . . . . . . . 17
2.6.1 LIDAR Physical Configuration . . . . . . . . . . . . . . . . . 17
2.6.2 Sensor Physical Configuration . . . . . . . . . . . . . . . . . . 18
2.7 System Level Architecture . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Team and Project Management . . . . . . . . . . . . . . . . . . . . . 20
3 Subsystem: Environmental Sensing 23
3.1 Air Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1 Payload Requirements . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Component Selection . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 PCB Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Sensor and Camera Layout . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Subsystem: Sensor Housing 30
4.1 Need for Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
iv
4.2 Materials Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Initial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 CFD Analysis and Iterative Work . . . . . . . . . . . . . . . . . . . . 33
4.5 Final Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5 Subsystem: Operator Control and User Interface 38
5.1 User-Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 RobotWebTools and the ROS Control Center . . . . . . . . . . . . . 39
5.3 Improving the ROS Control Center . . . . . . . . . . . . . . . . . . . 41
5.3.1 Rendering the LIDAR Point Cloud . . . . . . . . . . . . . . . 43
5.4 Network for Internet Communication . . . . . . . . . . . . . . . . . . 44
6 Subsystem: Communications 46
7 Subsystem: Power 48
8 Subsystem: Localization/Mapping 49
8.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2 Coordinate Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.3 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.4 Hector SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.5 3D Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9 Construction Plan 58
10 System Integration Testing and Results 59
10.1 Range Requirement Testing . . . . . . . . . . . . . . . . . . . . . . . 59
10.2 Latency Requirement Verification . . . . . . . . . . . . . . . . . . . . 60
10.3 GPS Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.4 Localization and Mapping Testing . . . . . . . . . . . . . . . . . . . . 62
10.5 Environmental Sensor Package Testing . . . . . . . . . . . . . . . . . 63
v
10.6 Blind-spot Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11 Costing Analysis 68
12 Commercialization Plan 69
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
12.2 Goals and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
12.3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
12.4 Potential Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
12.5 Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
12.6 Sales and Marketing Strategy . . . . . . . . . . . . . . . . . . . . . . 75
12.7 Manufacturing Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
12.8 Product Cost and Price . . . . . . . . . . . . . . . . . . . . . . . . . 77
12.9 Service and Warranties . . . . . . . . . . . . . . . . . . . . . . . . . . 79
12.10Financial Plan and ROI . . . . . . . . . . . . . . . . . . . . . . . . . 80
13 Engineering Standards and Realistic Constraints 81
13.1 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
13.2 Health and Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
13.3 Manufacturability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
13.4 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
13.5 Society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
14 Summary and Conclusions 85
Appendix A Design Requirement Flowdown A-1
References A-1
Appendix B Market Survey B-1
Appendix C Tradeoff Analysis C-1
vi
Appendix D Budget D-1
Appendix E Gantt Chart E-1
Appendix F Power Budget F-1
Appendix G Drawings G-1
Appendix H Code H-1
H.1 Cameras Launch File . . . . . . . . . . . . . . . . . . . . . . . . . . . H-1
Appendix I Safety Protocol I-1
Appendix J Conference Slides J-1
vii
List of Figures
1.1 Polaris 6x6 Ranger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Fire Investigation Flowchart [?] . . . . . . . . . . . . . . . . . . . . . 4
2.1 Use Case Scenario Illustration . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Software Component Block Diagram . . . . . . . . . . . . . . . . . . 12
2.3 Mech/Elen Component Block Diagram . . . . . . . . . . . . . . . . . 13
2.4 Argo J5 Mobility Platform . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Northrop Grumman’s Andros F6 . . . . . . . . . . . . . . . . . . . . 15
2.6 Northrop Grumman’s Remotec Wheelbarrow Mk9 . . . . . . . . . . . 15
2.7 Elimco UAV-E300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Sensefly’s UAV EBee . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 LIDAR Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10 Sample Sensor Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.11 System Layout Architecture . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 MQ-Series gas sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Sharp air particulate sensor with air flow . . . . . . . . . . . . . . . . 25
3.3 Air quality PCB schematic . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Printed circuit board layout . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Logitech c615 camera . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Example of OpenCV People Detection Application . . . . . . . . . . 29
4.1 For the gas sensors to work, air must flow over the sensor . . . . . . . 32
4.2 For the air particulate sensor to work, air must flow through the sensor 32
4.3 The solid designed for the initial CFD analysis that shows the initial
design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 CFD streamline analysis for our first design . . . . . . . . . . . . . . 34
4.5 CFD streamline analysis for our second design . . . . . . . . . . . . . 35
4.6 CFD streamline analysis for our final design . . . . . . . . . . . . . . 36
viii
Description:It contains a single-cylinder carbureted gasoline engine which produces approximately 40 horsepower. The two The project is called the ROS Control Center and is an AngularJS project which provides a template for how to build