Table Of ContentHindawiPublishingCorporation
ISRNOrganicChemistry
Volume2013,ArticleID292396,14pages
http://dx.doi.org/10.1155/2013/292396
Review Article
Goniomitine: An Overview on the Chemistry of
This Indole Alkaloid
JoséC.F.Alves
InstitutodePesquisasdeProdutosNaturaisWalterMors,CentrodeCieˆnciasdaSau´de,BlocoH,
UniversidadeFederaldoRiodeJaneiro,21941-902RiodeJaneiro,RJ,Brazil
CorrespondenceshouldbeaddressedtoJose´C.F.Alves;[email protected]
Received20September2013;Accepted22October2013
AcademicEditors:G.Li,F.Machetti,andJ.Wu
Copyright©2013Jose´C.F.Alves. This is an open access article distributed under the Creative Commons Attribution License,
whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
Thispaperreportsanoverviewonthechemistryoftheindolealkaloidgoniomitinefocusing,mainly,onthemethodsofsynthesis
relatedtothisnaturalproductandanalogs.
1.Introduction the same plant from where goniomitine had been isolated.
Therelativestructureofgoniomitine(1)wassoonaftercon-
Theindolealkaloidsbelongtotheclassofnaturalsubstances firmedbyTakanoetal.[8]throughthetotalenantioselective
displaying biological activities as well as a broad structural synthesis of the natural form of this alkaloid. It could be
diversity.Inviewoftheseimportantproperties,theseprod- evidenced that the absolute structure of the compound 1 is
uctsaretargetofstudyintheareasofisolation,identification, enantiomerictotheonethathadbeeninitiallyproposedfor
and synthesis [1–5]. Goniomitine (1) (Figure1) is an indole 20S,21Rconfiguration.
alkaloid that was isolated and identified by Randriambola
et al. [6] and Hashimoto and Husson [7]. The unique
structureandbiologicalactivityofgoniomitinehaveattracted 3.BiogenesisofGoniomitine
the attention of several groups. This review describes the
isolation, biogenesis hypothesis, chemical transformations, Randriambolaetal.[6]proposedthatgoniomitine(1)maybe
andsynthesesofthisalkaloidandanalogs. derivedfromtheAspidospermaskeletonofvincadifformine
(2)bythesuccessivestepsdepictedinScheme1.
2.IsolationofGoniomitine
4.ChemicalTransformationsand
In the course of studies of the alkaloids of the genus SynthesesofGoniomitineandAnalogs
Gonioma, Randriambola et al. [6] isolated, from the root
bark of Gonioma malagasy, a crystalline compound named 4.1.ChemicalTransformationsofGoniomitine. Fortheocca-
goniomitine with melting point of 150∘C (ether-methanol), sion of the structural determination of goniomitine (1) [6],
[C𝛼1]9DH2026−N820O∘(H(cRM0.9S,Min+∙C2H98C.2l03)8,0,acnadlcumlaoteledcfuolrar298fo.2rm04u5l)a. t5hiuspcoonmtproeautnmdewntaswtirtahnsAfoc2rmOeidninMtoeOthHeNan-daceintytoldtehreivNat,iOve-
Thestructureofgoniomitinewasinitiallyproposedasindi- diacetylderivative6upontreatmentwithAc2Oinpyridine
cated in Figure1, with 20S, 21R configuration, based on its (Scheme2). The formation of the acetylated compounds 5
NMRspectra.Itsabsolutestructurewasdeducedthroughthe and6confirmedthepresenceofthegroupsOHandNHin
correlationwithotheralkaloidsfromAspidospermafoundin thestructureof 1.
2 ISRNOrganicChemistry
OH OH
N N
S R R S
H H
21 20 21 20
H N H N
(20R, 21S)-(−)-Goniomitine (1) (20S, 21R)-(+)-Goniomitine (1)
(natural) (unnatural)
Figure1:Natural(−)-andunnatural(+)-goniomitine(1).
3 14
5 4N 15 HO H N HO H N+ OH
20 19
10 9 68271 H 116718 a-b H c
11 13 N1 2 CO2Me N+ N N
12
H H H H
4
2 3 4
N
H +
d
OH
6
9 8 7 5
10
2 16
11 1
13 N 17 18
12 21
H 20 19
H N4 15
3
14
1
Scheme1:Biogenetichypothesisoftransformationofvincadifformine(2)intogoniomitine(1):(a)oxidativefissionoftheC-5,N-4bond;(b)
decarboxylation;(c)retro-Mannichreaction;(d)nucleophilicattackoftheindolenitrogenontheiminiummoiety.
OH OH OAc
Ac2O Ac2O
MeOH Py
N N N
H H H
Ac N H N Ac N
5 1 6
Scheme2:Chemicaltransformationsofgoniomitine(1)intotheacetylderivatives5and6.
ISRNOrganicChemistry 3
OH OH OH
CH3
a b c d
(55%) (57%) (97%) (91%)
N H N N N N
H H H H
TMS
7 8 9 10 11
N N N N
Me + Me
−
I
e (59%)
OH
11 +
N
(36 : 23) H
Me N
(+/−)-12
Scheme3:Reagentsandconditions:(a)(i)n-BuLi(2.2equiv),hexane(reflux,6h)and(ii)methyl3-(3-pyridyl)propanoate,THF(−78to
∘
15C);(b)MeMgI(10equiv),ethyleneoxide(10equiv),Et2O(1h),reflux(2h);(c)MeI,CH2Cl2(reflux,2h);(d)H2,PtO2,MeOH(3h);(e)
H2,PtO2,NaOMe,MeOH(3h).
4.2. Synthesis of the Goniomitine Analog (+/−)-12. In order as a result of the attempts to synthesize (+)-goniomitine
to ascertain unambiguously the unprecedented structure of (1) from the compound 40, previously obtained from (−)-
the alkaloid goniomitine (1), Hashimoto and Husson [7] vincadifformine(2)(Scheme5)[9].InScheme7aredepicted
synthesizedthegoniomitineanalog(+/−)-12bythesequence thesequences ofreactionsthatled to thesynthesisofcom-
ofreactionsdepictedinScheme3. pound45aswellasotheralkaloidswithtetracyclicskeleton
ofgoniomitine(1).
4.3. Total Synthesis of (−)-Goniomitine by Takano. The first
enantiocontrolledtotalsynthesisofnatural(−)-goniomitine 4.6.SynthesisoftheGoniomitineAnalogs 52–55 byCycload-
(1) was published in 1991 by Takano et al. [8], who estab-
dition Reactions. In the year 1996, Gu¨rtler et al. [11] pub-
lished the absolute stereochemistry of this alkaloid. This lished the synthesis of the goniomitine analogs 52–55 by
total synthesis, depicted in Scheme4, starts with the chiral [4 + 2] cycloaddition reactions between 2-vinylindoles
cyclopentadienonesynthon(−)-13.
and substituted cyclic enamines, via anodic oxidation
(Scheme8).
4.4.TheFirstBiomimeticApproachtotheSkeletonofGoniomi-
tine from an Aspidosperma Alkaloid. The results from the
4.7.ProposalofSynthesisofGoniomitinebyAlves. Intheyear
study of biomimetic transformation of an Aspidosperma
alkaloid (2) into the substances 39-40, with the skeleton 2000,Alves[12]presentedhisqualificationexamofdoctorate
of goniomitine (1), were published in 1995 by Lewin et al. aboutaplanofsynthesisoftheindolealkaloidgoniomitine
(1). The convergent strategies and synthetic routes for the
[9]. The sequences of reactions for the discovery of a new
synthesis of this alkaloid, idealized on that occasion, are
biomimeticinvitrorearrangementaredepictedinScheme5.
described in the supplementary material of this review,
Scheme6 displays the proposed mechanism [9] for the
transformation of compound 36 into the alkaloids 39 and availableonlineathttp://dx.doi.org/10.1155/2013/292396.
40.
4.8. Syntheses of Cytotoxic Bisindole Alkaloids. In the year
4.5. Semisynthesis of (+)-(16S,20S,21R)-16-Hydroxymethyl- 2000,Lewinetal.[13]publishedanarticleaboutaslightmod-
goniomitine from (−)-Vincadifformine. In continuation to ificationoftheBorchreductiveaminationmethod(delayed
the studies of chemical transformations of vincadifformine addition of NaBH3CN) [14, 15], applied to compound 40,
(2) into alkaloids analogs to goniomitine (1), Lewin and analogofthenaturalalkaloidgoniomitine(1).Asaresultof
Schaeffer[10]publishedin1995thesemisynthesisof(+)-16- thisreaction,aseriesofnewcytotoxicbisindolealkaloidswas
hydroxymethyl-goniomitine(45).Thisalkaloidwasobtained prepared,asdepictedinScheme9.
4 ISRNOrganicChemistry
H a-c H d O e-f S O
H (53%) H (72%⇒14)
S
(−)-13 14
O O 15 16
I g-h (75%)
O
20 HN OEt O O O
MeO j-k MeO i MeO
(82%⇒17)
19 18 17
O S
l (81%) H S
CO2Me
+
O m
N OEt (81%) N N
21 H 22 H O (11 : 70) 23
O
OMe
n-p
CN N
r-s q
N O (78%⇒25) N O N O (65%⇒23) N NH2
H H H
27 HN 26 HN 25 HN 24 O
t
H OH
CN CN
O
u v-x y
N (84%⇒27) N N (40%⇒29) N
21
Cl− + H H H
HN HN HN HN
28 29 30
z 31: C21-H𝛽
(82%)
(−)-1: C21-H𝛼
Scheme4:Reagentsandconditions:(a)Zn(5.0equiv),AcOH-EtOH(1:3),reflux(4h);(b)EtI(2.0equiv),t-BuOK(1.2equiv),THF(−70to
−30∘C,15min);(c)allylbromide(2.0equiv),t-BuOK(1.2equiv),THF(−30∘C,5min);(d)o-dichlorobenzene(reflux,24h);(e)LiAlH4(1.0
equiv),CuI(0.5equiv),HMPA-THF(1:4),−75∘C(15min);(f)propane-1,3-diyldithiotosylate(1.5equiv),t-BuOK(3.0equiv),t-BuOH-THF
∘ ∘
(1:4),0C;(g)KOH(5.0equiv),t-BuOH(70C,12h);(h)CH2N2,Et2O;(i)MeI(1.0equiv),CaCO3(5.0equiv),10%aq.MeCN(reflux,1h);
(j)Ph3P(4.0equiv),CBr4(2.0equiv),Et3N(3.0equiv),CH2Cl2(0∘C,5min);(k)LDA(3.0equiv),THF(−78∘C,10min);(l)compound20(1.1
equiv),PdCl2(PPh3)2(2%),CuI(5%),Et3N(reflux,30min);(m)NaOEt(10equiv),Et3N(5%),EtOH(reflux,3h);(n)(i)dicyclohexylborane
∘ ∘
(1.5equiv),THF(0C,30min),(ii)10%NaOH(1.0equiv),30%H2O2(3.0equiv),0C(30min);(o)phthalimide(1.3equiv),Ph3P(1.3equiv),
(i-PrO2CN)2(1.3equiv),THF(0∘C,10min);(p)NH2NH2⋅H2O(4.0equiv),EtOH(reflux,2h);(q)[Me2N=CH2]Cl(1.5equiv),CH2Cl2(r.t.,
∘
30min);(r)MeI,MeOH(r.t.,10min);(s)NaCN(1.3equiv),DMF(100C,10min);(t)POCl3(6.0equiv),toluene(reflux,2h);(u)NaBH4,
MeOH,0∘C;(v)DIBAL(1.5equiv),CH2Cl2(−75∘C,10min);(x)dil.H2SO4;(y)NaBH4;(z)30%HCl-MeOH(1:10),reflux(30min).
ISRNOrganicChemistry 5
+ Ar O O
N MeO N N N
5 O 5
3 steps a
H H H H
(82%)
Cl Cl Cl
N CO2Me N CO2Me N CO2Me N CO2Me
H
2 32 33 34
Ar =m-Cl-C6H4
O
CHO CHO O N Ar O N
HO 5 O 5
CO2Me CO2Me e H b H
(53%) Cl (71%) Cl
N + N N CO2Me N CO2Me
H H 35a: C5-H𝛼
HO N (42 : 11) N O 36 35b: C5-H𝛽 (3 : 1)
40 f 39
(40%) c (100%)
g
(52%) O
Ar O N
O 5
h
H
(48%)
N CO2Me
H
37
d (18%)
O N
HO 5
H
N
38
−1
Scheme5:Reagentsandconditions:(a)m-CPBA(1.1equiv),CH2Cl2(r.t.,3h);(b)0.2molL NaOH-MeOH(r.t.,5min);(c)NaI(3.0equiv),
−1 ∘
AcOH(r.t.,1.5h);(d)11molL HCl(105C,10min);(e)TFA(16equiv),CH2Cl2(r.t.,20min);(f)TFA(r.t.,4h);(g)TFA(16equiv),CH2Cl2
(r.t.,15h);(h)TFA(12.5equiv),CH2Cl2(r.t.,45h).
In continuation to the studies of synthesis of cytotoxic synthesis of racemic (+/−)-goniomitine (1), accomplished
bisindole alkaloids, Raoul et al. [16] published, in the year in 17 linear steps with 5.2% overall yield starting from
2001, an article with a novel series of these alkaloids pre- commercially available 𝛿-valerolactam (65). Their synthetic
pared by reductive amination of the compound 40 with approachincludestheapplicationofaformal[3+2]cycload-
various anilines, using the modified Borch amination con- dition between the highly functionalized nitrile 68 and the
ditionsdescribedinScheme9(delayedaddition(20min)of activated cyclopropane 69 to prepare the indole nucleus
NaBH3CN)[15].Theinfluenceofsubstitutionofthestarting (Scheme10).
aniline on the reaction and on cytotoxicity of produced
dimersisdiscussedinthepaper.
4.10. Total Synthesis of (+/−)-Goniomitine by Waser. De
Simoneetal.[18]publishedthesynthesisofracemicgoniomi-
4.9.TotalSynthesisof(+/−)-GoniomitinebyPagenkopf. Inthe tine (1) with the first study of its bioactivity, revealing
year 2008, Morales and Pagenkopf [17] published the total significant cytotoxicity against several cancer cell lines [18,
6 ISRNOrganicChemistry
CHO
+
−
O N HO N: O N CO2Me
HO TFA OHC OHC Cl
H H
CH2Cl2 N
Cl Cl Cl
H
N CO2Me N CO2Me N CO2Me − +
O N
36 36a H 36b 36b
CHO CHO CHO
CO2Me CO2Me CO2Me
b + a
N N N
b H
H H
−
N O N O −O +N
36d 36c
39
a
TFA
CHO CHO CHO
CO2Me CO2Me CO2Me
.. OCOCF3
N N+ H N
H H H
HO N −O N HO N
39a 39b 40
Scheme6
OH OH
CHO
CO2Me CO2Me CO2H
N a N b N
(62%) (43%)
H H H
HO N HO N HO N
40 41 42
c (57%)
OH OH OH OH
OH OH OH CH3
H H
N d N e N f N
H (35%) H (66%) H (75%) H
HO N HO N H N H N
43 44 45 46
∘
Scheme7:Reagentsandconditions:(a)NaBH3CN,AcOH(r.t.,1.5h);(b)NaOH-MeOH(120C,1h);(c)LiAlH4(excess),THF(reflux,3h);
∘
(d)H2(1atm),10%Pd-C,MeOH(r.t.,5h);(e)TiCl3-H2O,MeOH(r.t.,20h);(f)30%HCl-MeOH(120C,1.5h).
ISRNOrganicChemistry 7
Me
CN
N
Me
H CO2Me
Me N
55
d(62%)
Me R1 R3 Me
CN c CN + R2 N a CN
(91%) (68%)
N Me NH N Me
HHN CO2Me 49: R2= H, R3= CN HHN CN
47: R1= Me 50: R2= H, R3= CO2Me
54 48: R1= (CH2)2OEt 51: R2= Me, R3= CO2Me 52
b (53%)
OEt
CN
N
Me
H CN
H N
53
Scheme 8: Reagents and conditions: (a) vinylindole 47 (1.0 equiv), enamine 49 (2.37 equiv), CH3CN, LiClO4 (0.1mol L−1), electrolysis
(480mVversusAg/AgNO3,current(20to2mA),200min);(b)vinylindole48(1.0equiv),enamine49(6.17equiv),CH3CN,LiClO4(0.1mol
L−1),electrolysis(480mVversusAg/AgNO3,current(20to2mA),200min);(c)vinylindole47(1.0equiv),enamine50(1.4equiv),CH3CN,
LiClO4(0.1molL−1),electrolysis(480mVversusAg/AgNO3,current(20to2mA),40min);(d)vinylindole47(1.0equiv),enamine51(2.1
−1
equiv),CH3CN,LiClO4(0.1molL ),electrolysis(480mVversusAg/AgNO3,current(20to2mA),200min).
19]. The strategy of this synthesis is based on cyclization Using the synthetic route described in Scheme13, but
of aminocyclopropanes [20], applied to cyclopropyl ketone startingfromtheenantiomerofthelactam97(ent-97)Mizu-
83 to lead to compound 84 with tetracyclic skeleton of tani et al. [21] synthesized the unnatural (+)-goniomitine
goniomitine(Scheme11). (ent-1).Withtheracemic,natural,andunnaturalgoniomitine
inhand,theauthors[21]executedthepreliminarybioactive
assays, which revealed that natural (−)-goniomitine has
4.11. Total Syntheses of (+/−)-, (−)-, and (+)-Goniomitine by
strongerantiproliferativeactivityinMockandMDCK/MDR1
Mukay. In the year 2011, Mizutani et al. [21] published the
cellsthanitsenantiomer.
syntheses of both racemic and optically active goniomitine,
whoseprincipalstepsarethepreparationoftheindoleskele-
tonbytheirowndevelopedprocedure[22]andalkenecross- 4.12. Total Synthesis of (+/−)-Goniomitine by Bach. In the
metathesis. The synthesis of racemic (+/−)-goniomitine (1) year 2012, Jiao et al. [23] published the total synthesis of
was performed, as a preliminary study, by the sequence of racemic goniomitine (1), using the strategy of C-2 alkyla-
reactionsdepictedinScheme12. tion of indoles catalyzed by palladium via a norbornene-
The convergent total synthesis of the natural (−)-goni- mediated C–H activation [24]. The steps for the synthesis
omitine(1)[21]wascompletedbythesequenceofreactions of (+/−)-goniomitine (1), by this strategy, are depicted in
depictedinScheme13. Scheme14.
8 ISRNOrganicChemistry
MeO2C MeO2C
Me N HN
N N
CO2Me H N CO2Me H N
HO AcO
N N
H 63 H 62
HO N AcO N
e(68%)
f
(64
%)
MeO2C
HN
HN Ph
CHO
N
CO2Me CO2Me CO2Me H N
NH2·HCl HO
N + N + N
58 b H a H H
(45%) HO N (51%) HO N HO N
40 56 57 (23 : 28) 58
c(38%)
g
%)
(32
OH
MeO2C
HN HN
OH N N
H N CO2Me H N
HO H
N N
H H
HO N H N
64 59
d %)
(70
MeO2C MeO2C
HN Ac N
N N
CO2Me N + CO2Me H N
Ac Ac
N N
H H
Ac N (48 : 22) Ac N
61 60
Scheme9:Reagentsandconditions:(a)compound56(5.0equiv),NaBH3CN(immediateaddition),MeOH(r.t.,16h);(b)compound56(5.0
equiv),NaBH3CN(delayedaddition,20min),MeOH(r.t.,16h);(c)TiCl3-H2O(6.0equiv),MeOH(r.t.,20h);(d)Ac2O,Py(r.t.,48h);(e)
Ac2O,Py(r.t.,3h);(f)CH2O,NaBH3CN,AcOH(r.t.,2h);(g)LiAlH4,THF(reflux,3h).
ISRNOrganicChemistry 9
O O
R1 R2 X Bn CO2Et O
N (82b.,8 c%) N + CO2Et (74f%) N Bn
N
a 65: R1= R2= H d, e 67: X = OH 69 OMe H
(83%) 66: R1= Et, R2= Bn (70%) 68: X = CN 70
g (98%)
CO2Et
O O O
i h
Bn Bn
N NH (97%) N N (75%) N N
H H H
25 72 71
j (trace) j (70%)
CN CN
O O
i
Bn
N NH (97%) N N
H H
27 73
k (70%)
OH OH
CN
l m
(44%) (79%)
N N N
H 21 H 21 H 21
20 20 20
HN HN HN
29 31 (+/−)-Goniomitine (1)
Scheme10:Reagentsandconditions:(a)(i)n-BuLi(2.0equiv),THF(−78∘C),(ii)EtI(1.0equiv),−78∘C(1h),(iii)BnBr(1.0equiv),r.t.
(overnight);(b)(i)LDA(1.0equiv),THF(−78∘C,15min),(ii)BrCH2CH2OTHP(1.1equiv),r.t.(overnight);(c)TsOH(0.1equiv),MeOH(ice-
brinebath,4h);(d)Et3N(2.1equiv),MsCl(1.0equiv),CH2Cl2(0∘Ctor.t.,3h);(e)NaCN(2.0equiv),MeCN,120∘C(𝜇w,8h,900rpmstirring);
(f)Nitrile68(1.0equiv),cyclopropane69(2.9equiv),TMSOTf(1.0equiv),EtNO2(−30∘C,24h);(g)5%Pd-C(0.03equiv),mesitylene(reflux,
24h);(h)NaOH(10equiv),EtOH-H2O(1:1),150∘C(𝜇w,3h,900rpmstirring);(i)Na(5.0equiv),liq.NH3(0.042molL−1),THF(−78∘C,
∘
10min);(j)(i)[Me2N=CH2]Cl(1.5equiv),CH2Cl2(r.t.,15min),(ii)MeI(40equiv),MeOH(r.t.,10min),(iii)NaCN(1.3equiv),DMF(100C,
10min);(k)(i)POCl3(6.0equiv),toluene(reflux,2h),(ii)NaBH4(2.0equiv),MeOH(0∘C,30min);(l)(i)DIBAL(1.5equiv),CH2Cl2(−78∘C,
−1 ∘
10min),(ii)0.75molL H2SO4,(iii)NaBH4(2.2equiv),EtOH(0C,30min);(m)TsOH(cat.),Et3N-MeOH(3:5,v/v),reflux(30min).
4.13. Synthesis of (+)- and (−)-Goniomitine by Lewin. In thesameconditionsdescribedinScheme15.Theevaluation
the year 2013, Lewin et al. [25] have published the first oftheantiproliferativeeffectof(+)-and(−)-goniomitine(1),
biomimetic semisynthesis of goniomitine (1), in nine steps undertakenonfivehumancancercelllines,hasdemonstrated
with 11% overall yield, starting from vincadifformine (2). that unnatural (+)-goniomitine is more potent than its
Natural (−)- and unnatural (+)-goniomitine were prepared enantiomer(−)-goniomitine[25],inoppositiontoMizutani
from(+)-and(−)-vincadifformine,respectively.Thestepsfor etal.’sresultsonacaninekidneycellline(MDCKII)[21].
thesynthesisofunnatural(+)-goniomitine(1)aredepictedin
Scheme15. 4.14. Synthesis of (+/−)-Goniomitine by Zhu. In the year
Lewin et al. [25] have synthesized the natural (−)-goni- 2013, Xu et al. [26] have published a seven-step total
omitine(1),startingfrom(+)-vincadifformine(ent-2),using synthesis of (+/−)-goniomitine (1) through two key steps:
10 ISRNOrganicChemistry
H Cbz Cbz Cbz Cbz Cbz
N O a N O b N c N O d N H O e N H O
(67%) (93%) (76%) (91%) (93%)
OMe
OEt OH N
74 75 76 77 78 79
Me
OH OTIPS OTIPS
f g
(100%) h (48%)
N N N
H H
80 81 82 COOH
OH OTIPS OTIPS
+
H
j O O
i
(77%) (93%)
N N N
H H H
H
H N Cbz N
N
Cbz
(+/−)-Goniomitine (1) 84 83
∘ ∘
Scheme11:Reagentsandconditions:(a)(i)n-BuLi(2.2equiv),THF(0C,30min),(ii)EtI(1.5equiv),0C(20min),(iii)benzylchloroformate
∘ ∘
(1.05equiv),0C(20min);(b)(i)NaBH4(1.05equiv),MeOH(0C,15min),(ii)conc.H2SO4,Et2O(r.t.,1h);(c)N2CH2COOEt(4.0equiv),
(CuOTf)2⋅C7H8 (0.02equiv),CH2Cl2 (18h);(d)(i)BF3⋅OEt2 (0.15equiv),CH2Cl2 (−20to0∘C),(ii)NaOH(9.0equiv),H2O-THF-EtOH
∘ ∘
(1:1:3),0Cto60C(2h);(e)(i)DMTMM(1.5equiv),THF(r.t.,60min),(ii)MeNHOMe.HCl(1.0equiv),NMM(2.0equiv),r.t.(36h);(f)
∘ ∘
TIPSCl(1.05equiv),imidazole(2.1equiv),DMF(r.t.,1h);(g)(i)n-BuLi(1.2equiv),Et2O(0Cthenreflux,2h),(ii)CO2(0C,30min),(iii)
H3O+(pH2);(h)(i)t-BuLi(3.0equiv),compound82(1.5equiv),TMEDA(2.0equiv),THF(−78∘C,3h),(ii)amide79(1.0equiv),THF(0∘C,
∘
20min);(i)TsOH(0.2equiv),CH2Cl2(r.t.,10min);(j)(i)NaBH4,MeOH(0Ctor.t.,3h),(ii)Ac2O,Py(r.t.,overnight),(iii)H2,Pd-C(0.1
equiv),EtOH,(iv)TBAF(4.4equiv),THF(r.t.,30min).
(i) a novel palladium-catalyzed decarboxylative coupling of new efficient enantioselectivesynthetic strategies for this
reaction between the potassium nitrophenyl acetate 118 indolealkaloid,withlowoperationalcosts,isstillatargetto
and the vinyl triflate 115 for a rapid production of the bereached.
functionalized cyclopentene 119; (ii) a late-stage construc-
tion of the whole tetracyclic scaffold of goniomitine (1)
from the functionalized cyclopentene 120 by a one-pot
Abbreviations
integratedoxidation/reduction/cyclization(IORC)sequence
(Scheme16).
Ac: Acetyl
9-BBN: 9-Borabicyclo[3.3.1]nonane
Boc: tert-Butoxycarbonyl
5.Conclusions
Bn: Benzyl
n-Bu: n-Butyl
In summary, it may be concluded that this brief survey
on the chemistry of goniomitine has covered the literature t-Bu: tert-Butyl
relative to this alkaloid and analogs from 1987 to the first Bz: Benzoyl
semester of the year 2013. Taking into account the results DIAD: Diisopropylazodicarboxylate
published in this period, a considerable progress on the
DIBAL: Diisobutylaluminumhydride
synthesis of this alkaloid has been verified in the last years
DMF: N,N-Dimethylformamide
(2008–2013) with the publications of five racemic and two
DMSO: Dimethylsulfoxide
enantiomericsyntheses.Itisalsoimportanttoemphasizethe
recent pioneering works on the bioactive assays performed DMTMM: 2,4-Dimethoxy-6-(4-methylmorpholin-4-
with the racemic mixtures as well as both enantiomers of ium-4-yl) chloride
goniomitine. In spite of these progresses, the development DPPA: Diphenylphosphorylazide
Description:Review Article. Goniomitine: An Overview on the Chemistry of. This Indole Alkaloid. José C. F. Alves. Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Bloco H,. Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil. Correspondence shoul