Table Of ContentHindawi Publishing Corporation
Journal of Operators
Volume 2014, Article ID 389646, 16 pages
http://dx.doi.org/10.1155/2014/389646
Research Article
Coupled Fixed Point Theorems with New Implicit
Relations and an Application
G.V.R.Babu1andP.D.Sailaja1,2
1DepartmentofMathematics,AndhraUniversity,Visakhapatnam530003,India
2DepartmentofMathematics,LendiInstituteofEngineeringandTechnology,Vizianagaram535005,India
CorrespondenceshouldbeaddressedtoG.V.R.Babu;gvr [email protected]
Received28June2014;Accepted1October2014;Published11November2014
AcademicEditor:HagenNeidhardt
Copyright©2014G.V.R.BabuandP.D.Sailaja. This is an open access article distributed under the Creative Commons
AttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkis
properlycited.
WeintroducetwonewclassesofimplicitrelationsSandSwhereSisapropersubsetofS,andtheseclassesaremoregeneral
thantheclassofimplicitrelationsdefinedbyAltunandSimsek(2010).Weprovetheexistenceofcoupledfixedpointsforthemaps
satisfyinganimplicitrelationinS.Thesecoupledfixedpointsneednotbeunique.Inordertoestablishtheuniquenessofcoupled
fixedpointsweuseanimplicitrelationS,whereS⊂S.Ourresultsextendthefixedpointtheoremsonorderedmetricspacesof
AltunandSimsek(2010)tocoupledfixedpointtheoremsandgeneralizetheresultsofGnanaBhaskarandLakshimantham(2006).
Asanapplicationofourresults,wediscusstheexistenceanduniquenessofsolutionofFredholmintegralequation.
1.Introduction monotonepropertyif𝐹(𝑥,𝑦)ismonotonenondecreasingin𝑥
andmonotonenonincreasingin𝑦;thatis,forany𝑥,𝑦∈𝑋:
Existenceoffixedpointtheoremsinpartiallyorderedmetric
𝑥 ,𝑥 ∈𝑋, 𝑥 ⪯𝑥 ⇒𝐹(𝑥 ,𝑦)⪯𝐹(𝑥 ,𝑦),
spaces with a contractive condition has been considered by 1 2 1 2 1 2
several authors (see [1–6]). Guo and Lakshmikantham [7] (1)
𝑦 ,𝑦 ∈𝑋, 𝑦 ⪯𝑦 ⇒𝐹(𝑥,𝑦 )⪰𝐹(𝑥,𝑦 ).
introducedmixedmonotoneoperators.GnanaBhaskarand 1 2 1 2 1 2
Lakshmikantham [8] established the existence of coupled Theorem3(see[8]). Let(𝑋,⪯)beapartiallyorderedsetand
fixed points of mappings satisfying mixed monotone prop- supposethat𝑑isametricon𝑋suchthat(𝑋,𝑑)isacomplete
erty in partially ordered metric spaces. Later, Lakshmikan- metric space. Let 𝐹 : 𝑋×𝑋 → 𝑋 be a mapping satisfying
tham and Ciric [9] extended this property to two maps by mixedmonotoneproperty.Assumethatthereexistsa𝑘∈[0,1)
introducingmixed𝑔-monotonepropertyandestablishedthe with
existenceofcoupledcoincidencepointandcoupledcommon 𝑘
fixedpointsforapairofcommutingmaps. 𝑑(𝐹(𝑥,𝑦),𝐹(𝑢,V))≤ [𝑑(𝑥,𝑢)+𝑑(𝑦,V)]
2
Choudhury and Kundu [10] extended the existence of (2)
𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥⪰𝑢, 𝑦⪯V.
coupled coincidence and coupled common fixed points for
apairofnoncommutingmaps,particularlyforapairofcom-
Supposethateither𝐹iscontinuousorthefollowingconditions
patiblemaps.
holdin𝑋:
Definition1(see[7]). Let𝑋beanonemptyset.Anelement (i)ifanondecreasingsequence{𝑥𝑛} ⊆ 𝑋with𝑥𝑛 → 𝑥,
(𝑥,𝑦)in𝑋×𝑋iscalledacoupledfixedpointofthemapping then𝑥𝑛 ⪯𝑥forall𝑛and
𝑥𝐹∈: 𝑋𝑋i×sc𝑋alle→da𝑋fixiefd𝑥po=int𝐹o(𝑥f,𝐹𝑦i)fa𝐹n(d𝑥,𝑦𝑥)==𝐹𝑥(.𝑦,𝑥).Apoint (ii)itfheann𝑦o𝑛ni⪰nc𝑦refaosrinaglls𝑛e.quence{𝑦𝑛} ⊆ 𝑋with𝑦𝑛 → 𝑦,
Definition2(see[7]). Let(𝑋,⪯)beapartiallyorderedsetand If there exist 𝑥0,𝑦0 ∈ 𝑋 such that 𝑥0 ⪯ 𝐹(𝑥0,𝑦0) and 𝑦0 ⪰
𝐹:𝑋×𝑋 → 𝑋beamapping.Wesaythat𝐹satisfiesmixed 𝐹(𝑦0,𝑥0)then𝐹hasacoupledfixedpoint.
2 JournalofOperators
In2011,LuongandThuan[11]provedthefollowingcou- Manyauthors,namely,AltunandSimsek[12],Altunand
pledfixedpointtheorem. Turkoglu [14, 15], Imdad et al. [16], Popa [17], Popa and
Mocanu[18],SharmaandDeshpande[19],andTurkogluand
Theorem4(see[11]). Let(𝑋,⪯)beapartiallyorderedsetand Altun [20], continued the study of the existence of fixed
supposethat𝑑isametricon𝑋suchthat(𝑋,𝑑)isacomplete points in this direction. The purpose of using an implicit
metric space. Let 𝐹 : 𝑋×𝑋 → 𝑋 be a mapping satisfying relationisthattheconditioninvolvingimplicitrelationgener-
mixedmonotonepropertyon𝑋andthereexist𝑥0,𝑦0 ∈𝑋such alizesmanycontractionconditions,whichinturngeneralizes
that 𝑥0 ⪯ 𝐹(𝑥0,𝑦0) and 𝑦0 ⪰ 𝐹(𝑦0,𝑥0). Suppose that there manyexistingresults.In2010,AltunandSimsek[12]defined
existsa𝜓 : [0,∞) → [0,∞)withlim𝑡→𝑟+𝜓(𝑡) > 0forall anewclassofimplicitrelationsasfollowsandestablisheda
𝑟>0andlim𝑡→0+𝜓(𝑡)=0suchthat fixedpointtheoreminorderedmetricspaces.
𝑑(𝑥,𝑢)+𝑑(𝑦,V) LetTbethesetofallcontinuousfunctions𝑇:(𝑅+)6 →
𝑑(𝐹(𝑥,𝑦),𝐹(𝑢,V))≤ 𝑅satisfyingthefollowingconditions:
2
𝑑(𝑥,𝑢)+𝑑(𝑦,V) (3) (T1):𝑇(𝑡1,...,𝑡6)isnonincreasinginvariables𝑡2,𝑡3,...,𝑡6;
−𝜓( ),
2
(T2):thereexistsarightcontinuousfunction𝑓:𝑅+ → 𝑅+,
foreach𝑥,𝑦,𝑢,V∈𝑋,𝑥⪰𝑢and𝑦⪯V.Supposethateither 𝑓(0)=0,𝑓(𝑡)<𝑡for𝑡>0,suchthatfor𝑢,V≥0
(a)𝐹iscontinuousor
𝑇(𝑢,V,𝑢,V,0,𝑢+V)≤0 or 𝑇(𝑢,V,0,0,V,V)≤0 (4)
(b)𝑋hasthefollowingproperty:
(i)ifanondecreasingsequence{𝑥𝑛}⊆𝑋with𝑥𝑛 → implies𝑢≤𝑓(V);
𝑥,then𝑥𝑛 ⪯𝑥forall𝑛and (T3):𝑇(𝑢,0,𝑢,0,0,𝑢)>0for𝑢>0.
(ii)ifanonincreasingsequence{𝑦𝑛}⊆𝑋with𝑦𝑛 →
𝑦,then𝑦𝑛 ⪰𝑦forall𝑛. Theorem5(see[12]). Let(𝑋,⪯)beapartiallyorderedsetand
supposethat𝑑isametricon𝑋suchthat(𝑋,𝑑)isacomplete
Then𝐹hasacoupledfixedpoint. metric space. Let 𝐹 : 𝑋 → 𝑋 be a nondecreasing mapping
suchthat,forall𝑥,𝑦∈𝑋with𝑦⪯𝑥,
InSection2ofthispaper,weintroducetwonewclassesof
implicitrelationsSandSwhereSisapropersubsetofS,
𝑇(𝑑(𝐹𝑥,𝐹𝑦),𝑑(𝑥,𝑦),𝑑(𝑥,𝐹𝑥),
andtheseclassesaremoregeneralthantheclassofimplicit
(5)
relationsdefinedbyAltunandSimsek[12].InSection3,we
𝑑(𝑦,𝐹𝑦),𝑑(𝑥,𝐹𝑦),𝑑(𝑦,𝐹𝑥))≤0,
prove the existence of coupled fixed points for the maps
satisfyinganimplicitrelationinS.Thesecoupledfixedpoints
need not be unique (Example17). In order to establish the where𝑇 ∈ T.Also,supposethateither𝐹iscontinuousorthe
uniquenessofcoupledfixedpointsweuseanimplicitrelation followingconditionholds:“ifanondecreasingsequence{𝑥𝑛} →
S,whereS ⊂ S.Ourresultsextendthefixedpointtheo- 𝑥,then𝑥𝑛 ⪯𝑥forall𝑛”.
rems on ordered metric spaces of Altun and Simsek [12] to Ifthereexistsan𝑥0 ∈ 𝑋with𝑥0 ⪯ 𝐹(𝑥0),then𝐹hasa
coupled fixed point theorems and generalize the results of fixedpoint.
GnanaBhaskarandLakshimantham[8].InSection4,asan
application to results of Section3, we discuss the existence Wenowdefineamoregeneralclassofimplicitrelations
anduniquenessofsolutionofFredholmintegralequation. thanthatof[12]asfollows.
LetSbethesetofallcontinuousfunctions𝑇: (𝑅+)6 →
𝑅satisfyingthefollowingconditions:
2.ImplicitRelations
In1999,Popa[13]introducedtheideaoftheclassFofimplicit (𝑇1):𝑇(𝑡1,...,𝑡6)isnonincreasinginvariables𝑡5,𝑡6;
functionstoprovetheexistenceoffixedpointsasfollows.
Let𝑅+denotethesetofallnonnegativerealnumbers.Let (𝑇2):t𝑡h>er0e,esxuicshtsthaamtfaoprp𝑢in,Vg≥𝑓0: 𝑅+ → 𝑅+, 𝑓(𝑡) < 𝑡 for
Fbethefamilyofreallowersemicontinuousfunctions𝐹 :
(𝑅+)6 → 𝑅satisfyingthefollowingconditions: 𝑇(𝑢,V,𝑢,V,0,𝑢+V)≤0 or 𝑇(𝑢,V,0,0,V,V)≤0, (6)
(𝐹1):𝐹isnonincreasinginfifthandsixthvariables;
(𝐹2): there exists ℎ ∈ (0,1) such that for every 𝑢,V ≥ 0 implies𝑢≤𝑓(V);
with
(𝑇3):𝑇(𝑢,0,𝑢,0,0,𝑢)>0for𝑢>0.
𝐹2𝑎 :𝐹(𝑢,V,V,𝑢,𝑢+V,0)≤0or
𝐹2𝑏 : 𝐹(𝑢,V,𝑢,V,0,𝑢+V)≤0 HereweobservethatT⊆S.
wehave𝑢≤ℎV;
Example6. 𝑇(𝑡1,...,𝑡6) = 𝑡1 −[𝑎𝑡2 +𝑏𝑡3 +𝑐𝑡4 +𝑑𝑡5 +𝑒𝑡6],
(𝐹3): 𝐹(𝑢,𝑢,0,0,𝑢,𝑢)>0,∀𝑢>0. where𝑎,𝑏,𝑐,𝑑,𝑒≥0and𝑎+𝑏+𝑐+𝑑+2𝑒<1.
JournalofOperators 3
Clearly(𝑇1)holds.Let𝑇(𝑢,V,𝑢,V,0,𝑢+V) = 𝑢−(𝑎V+ In this paper, we prove a coupled fixed point theorem
𝑏𝑢 + 𝑐V + 𝑒(𝑢 + V)) = (1 − 𝑏 − 𝑒)𝑢 − (𝑎 + 𝑐 + 𝑒)V ≤ 0. (Theorem16) using an implicit relation in S. In order to
Thus 𝑢 ≤ ((𝑎+𝑐+𝑒)/(1−𝑏−𝑒))V. Let 𝑇(𝑢,V,0,0,V,V) = obtain the uniqueness of coupled fixed point we define
𝑢 − (𝑎V + 𝑑V + 𝑒V) = 𝑢 − (𝑎 + 𝑑 + 𝑒)V ≤ 0. Thus 𝑢 ≤ anotherclassSofimplicitrelationsasfollows.
(𝑎+𝑑+𝑒)V.Nowdefine𝑓: 𝑅+ → 𝑅+ by𝑓(𝑡) = 𝑘𝑡,where LetSbethesetofallcontinuousfunctions𝑇:(𝑅+)6 →
𝑘=max{((𝑎+𝑐+𝑒)/(1−𝑏−𝑒)),𝑎+𝑑+𝑒}<1,𝑓(𝑡)<𝑡for 𝑅satisfyingthefollowingconditions:
𝑡>0.Hence𝑢≤𝑓(V).Also,𝑇(𝑢,0,𝑢,0,0,𝑢)=𝑢−(𝑏𝑢+𝑒𝑢)=
(1−𝑏−𝑒)𝑢>0for𝑢>0.Therefore𝑇∈S. (𝑇1):𝑇(𝑡1,...,𝑡6)isnonincreasinginvariables𝑡3,𝑡5,𝑡6;
wExhaemrep𝜑le7:. 𝑅𝑇+(𝑡1,→...,𝑅𝑡+6)is=a𝑡1c−o𝜑n(tminauxo{u𝑡2s,m𝑡3a,𝑡p4,w(1it/h2)𝜑((𝑡05)+𝑡=6)}0),, (𝑇2):𝑡t>he0r,esuexchisttshaatm,foaprpeiancgh𝑓𝑢,:V𝑅≥+0,→ 𝑅+,𝑓(𝑡) < 𝑡for
𝜑(𝑡)<𝑡for𝑡>0. 𝑇(𝑢,V,𝑢,V,0,𝑢+V)≤0 or 𝑇(𝑢,V,0,0,V,V)≤0
Clearly(𝑇1)holds.Let𝑢>0and𝑇(𝑢,V,𝑢,V,0,𝑢+V)=𝑢− (8)
𝜑(max{V,𝑢,V,(1/2)(𝑢+V)})=𝑢−𝜑(max{𝑢,V})≤0.If𝑢≥V or 𝑇(𝑢,V,𝑢+V,0,V,𝑢)≤0,
then𝑢−𝜑(𝑢)≤0,whichisacontradiction.Hence𝑢<Vand
hence𝑢≤𝜑(V).Let𝑢>0and𝑇(𝑢,V,0,0,V,V)=𝑢−𝜑(V)≤0; implies𝑢≤𝑓(V);
sthataitsfiise,d𝑢w≤ith𝜑(𝑓V)=.I𝜑f.𝑢A=lso0,t𝑇h(e𝑢n,0c,le𝑢a,r0ly,0𝑢,𝑢≤)=𝜑(𝑢V)−.𝜑Th(𝑢u)s>(𝑇02)foirs (𝑇3):𝑇(𝑢,0,𝑢,0,0,𝑢)>0for𝑢>0.
𝑢>0.Therefore𝑇∈S. HereweobservethatS ⊆S.
Example8. 𝑇(𝑡1,...,𝑡6) = 𝑡1−(𝑡2−𝜑(𝑡2)),where𝜑 : 𝑅+ → All functions in Examples 8–10 are in S. Some more
𝑅+ is a continuousmap with 𝜑(𝑡) = 0 if and only if 𝑡 = 0, examplesinthisdirectionareasfollows.
𝜑(𝑡)C<le𝑡arfolyr(𝑡𝑇>1)0h.olds. Let 𝑇(𝑢,V,𝑢,V,0,𝑢 + V) = 𝑢 − (V − wExhaemrep𝑎le,𝑏12,𝑐.,𝑇𝑑,(𝑡𝑒1,≥..0.a,𝑡n6d)𝑎=+𝑡1𝑏−+[𝑐𝑎𝑡+2𝑑++𝑏𝑡23𝑒+<𝑐𝑡14a+nd𝑑𝑡𝑏5≤+𝑐𝑒.𝑡6],
𝜑(V)) ≤ 0.Let𝑇(𝑢,V,0,0,V,V) = 𝑢−(V−𝜑(V)) ≤ 0;thatis, Clearly(𝑇)holds.Let𝑇(𝑢,V,𝑢,V,0,𝑢+V) = 𝑢−(𝑎V+
𝑢 ≤ V−𝜑(V).Thus𝑢 ≤ 𝑓(V)with𝑓 : 𝑅+ → 𝑅+ by𝑓(𝑡) = 𝑏𝑢+𝑐V+𝑒(𝑢1+V)) = (1−𝑏−𝑒)𝑢−(𝑎+𝑐+𝑒)V ≤ 0.Thus
𝑡−𝜑(𝑡).Hence(𝑇2)issatisfied.Also,𝑇(𝑢,0,𝑢,0,0,𝑢) = 𝑢− 𝑢≤((𝑎+𝑐+𝑒)/(1−𝑏−𝑒))V.Let𝑇(𝑢,V,0,0,V,V)=𝑢−(𝑎V+
(𝑢−𝜑(𝑢))=𝜑(𝑢)>0for𝑢>0.Hence𝑇∈S. 𝑑V+𝑒V)=𝑢−(𝑎+𝑑+𝑒)V≤0.Thus𝑢≤(𝑎+𝑑+𝑒)V.Nowlet
tEhxaatCmislpe,lae𝑢r9ly≤.(𝑇𝑇𝑘(1V𝑡)1.h,L.oe.lt.d,s𝑇𝑡.6(L)𝑢e,=tV𝑇,𝑡01(,𝑢−0,,𝑘VV𝑡,,2𝑢V,,)wV,h=0e,r𝑢𝑢e0+−≤V𝑘)V𝑘=<≤𝑢10−.;𝑘thVa≤t i0s;, 𝑅𝑇im+(𝑢pb,lyiVe,𝑓s𝑢(𝑢𝑡+)≤V=,((0𝑘𝑎,𝑡V,+w,𝑢𝑐h)+e=re𝑑𝑢)𝑘/−=(1[m𝑎−Vax𝑏+{−(𝑏((𝑎𝑒𝑢)+)+V𝑐.VN+)+o𝑒w)𝑑/Vd(e+1fi−𝑒n𝑢e𝑏]𝑓−≤:𝑒0𝑅).)+Th,𝑎→i+s
A𝑢l≤so𝑘,V𝑇.(Th𝑢,0u,s𝑢,𝑢,0≤,0𝑓,𝑢()V)=w𝑢it>h𝑓0(f𝑡o)r=𝑢𝑘>𝑡.0H.Thenuces,𝑇𝑇2∈iSss.atisfied. 𝑑0𝑢+f≤o𝑒r𝑓,𝑢(((V>𝑎).+0A.𝑐lThs+o,e𝑑𝑇r)e(f/𝑢o(,r10e,−𝑇𝑢,𝑏∈0−,S0𝑒,)𝑢.)})<=1𝑢,−𝑓((𝑏𝑡𝑢)+<𝑒𝑢𝑡)fo=r𝑡(1>−0𝑏.−H𝑒e)𝑢nc>e
aExcaomntpinleu1o0u.s𝑇m(𝑡a1p,.w..it,h𝑡6𝜑)(=0)𝑡1=−0𝜑,𝜑(𝑡(2𝑡)),<wh𝑡eforer𝜑𝑡>:𝑅0+. → 𝑅+is Example13. 𝑇(𝑡1,...,𝑡6)=𝑡1−𝜑(max{𝑡2,𝑡3/2,𝑡4,(1/2)(𝑡5+
thatCisle,a𝑢rl≤y(𝜑𝑇(1V))h.oLledts𝑇.L(𝑢et,V𝑇,(0𝑢,,0V,,V𝑢,,VV),=0,𝑢𝑢+−V𝜑)(=V)𝑢≤−0𝜑;(tVh)a≤ti0s;, 𝑡6)})C,lweahrelrye(𝜑𝑇1:)𝑅h+ol→ds.𝑅Le+tw𝑢it>h𝜑0(a0n)d=𝑇0(,𝑢𝜑,V(𝑡,)𝑢<,V,𝑡0fo,𝑢r𝑡+>V)0.=
A𝑢l≤so,𝜑𝑇(V()𝑢.,Th0,u𝑢s,0𝑢,0≤,𝑢𝑓)(V=)𝑢wi−th𝜑𝑓(0)==𝜑.𝑢H>en0cefo(r𝑇𝑢2)>is0sa.tHisefinecde. 𝑢If−𝑢𝜑≥(mV,atxh{eVn,𝑢𝑢/2−,𝜑V,((𝑢1)/2≤)0(𝑢,w+hVic)}h)i=sa𝑢co−n𝜑tr(amdaicxt{i𝑢o,nV.}H)e≤nc0e.
𝑇∈S. 𝑢 < Vandhence𝑢 ≤ 𝜑(V).Let𝑢 > 0and𝑇(𝑢,V,0,0,V,V) =
𝑢 − 𝜑(V) ≤ 0; that is, 𝑢 ≤ 𝜑(V). Let 𝑢 > 0 and 𝑇(𝑢,V,𝑢 +
Example11. V,0,V,𝑢)=𝑢−𝜑(max{V,𝑢,(𝑢+V)/2,0,(1/2)(𝑢+V)})=𝑢−
𝜑(max{𝑢,V}) ≤ 0. If 𝑢 ≥ V, then 𝑢 − 𝜑(𝑢) ≤ 0, which is a
𝑡 𝑡 𝑡 contradiction. Hence 𝑢 < V and hence 𝑢 ≤ 𝜑(V). If 𝑢 = 0,
𝑇(𝑡1,...,𝑡6)=𝑡1−𝛼𝑡 +4𝑡5 6+1, thenclearly𝑢≤𝜑(V).Thus(𝑇)issatisfiedwith𝑓=𝜑.Also,
2 3 (7) 𝑇(𝑢,0,𝑢,0,0,𝑢)=𝑢−𝜑(𝑢)>20for𝑢>0.Therefore,𝑇∈S.
where 0≤𝛼<1.
ThefollowingexamplessuggestthatSisapropersubset
𝑇isnonincreasingin𝑡5and𝑡6butnotinanyof𝑡2,𝑡3.Let ofS.
𝑢>0,𝑇(𝑢,V,𝑢,V,0,𝑢+V)=𝑢−𝛼(0)=𝑢<0,acontradiction.
Nowlet𝑇(𝑢,V,0,0,V,V)=𝑢−𝛼(0)=𝑢<0,acontradiction. Example 14. 𝑇(𝑡1,...,𝑡6) = 𝑡1 − 𝜑(max{𝑡2,𝑡3,𝑡4,(1/2)(𝑡5 +
If 𝑢 = 0 then clearly 𝑢 ≤ 𝛼V. Thus (𝑇2) is satisfied. Also, 𝑡6)}),where𝜑 : 𝑅+ → 𝑅+ definedby𝜑(𝑡) = 𝑡/2.Inviewof
𝑇(𝑢,0,𝑢,0,0,𝑢) = 𝑢 > 0for𝑢 > 0.Thus𝑇 ∈ S.But𝑇does Example7,𝑇∈S.But𝑇isnotinSforlet𝑢,V>0,V≤𝑢and
notbelongtoT. supposethat𝑇(𝑢,V,𝑢+V,0,V,𝑢)=𝑢−𝜑(max{V,𝑢+V,0,(𝑢+
InviewofExample11,theclassofimplicitfunctionsSis V)/2}) = 𝑢 − 𝜑(𝑢 + V) = 𝑢 − (𝑢 + V)/2 ≤ 0. This implies
larger than that of T introduced by Altun and Simsek [12] 𝑢 ≤ V.Therefore𝑢 = V.Hence,therecannotexistafunction
and we use the implicit relation involving implicit function 𝑓 : 𝑅+ → 𝑅+ with𝑓(𝑡) < 𝑡for𝑡 > 0suchthat𝑢 ≤ 𝑓(V).
ofStoproveourmainresults. HenceS ⊂S.
4 JournalofOperators
Example15. Letusconsider𝑇asinExample11.Then𝑇∈S. If𝑥𝑛 = 𝑥𝑛+1 and𝑦𝑛 = 𝑦𝑛+1 forsome𝑛,then(𝑥𝑛,𝑦𝑛)is
But𝑇doesnotbelongtoS,since𝑇isnotnonincreasingin acoupledfixedpointof𝐹.So,withoutlossofgenerality,we
𝑡3,sothatSisapropersubsetofS. assumethat𝑥𝑛 ≠𝑥𝑛+1or𝑦𝑛 ≠𝑦𝑛+1forall𝑛.
Nowusing(9),wehave
3.ExistenceofCoupledFixedPoints
𝑑(𝐹(𝑥 ,𝑦 ),𝐹(𝑥 ,𝑦 ))+𝑑(𝐹(𝑦 ,𝑥 ),𝐹(𝑦 ,𝑥 ))
UsingaNewImplicitRelation 𝑇( 𝑛+1 𝑛+1 𝑛 𝑛 𝑛+1 𝑛+1 𝑛 𝑛 ,
2
Theorem16. Let(𝑋,⪯)beapartiallyorderedsetandsuppose 𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
that𝑑is ametricon 𝑋suchthat (𝑋,𝑑)is acompletemetric 𝑛+1 𝑛 2 𝑛+1 𝑛 ,
space. Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a mapping satisfying mixed
monotonepropertyandsupposethatthereexists𝑇 ∈ Ssuch 𝑑(𝑥𝑛+1,𝐹(𝑥𝑛+1,𝑦𝑛+1))+𝑑(𝑦𝑛+1,𝐹(𝑦𝑛+1,𝑥𝑛+1)),
that 2
𝑇(𝑑(𝐹(𝑥,𝑦),𝐹(𝑢,V))+𝑑(𝐹(𝑦,𝑥),𝐹(V,𝑢)), 𝑑(𝑥𝑛,𝐹(𝑥𝑛,𝑦𝑛))+𝑑(𝑦𝑛,𝐹(𝑦𝑛,𝑥𝑛)),
2
2
𝑑(𝑥 ,𝐹(𝑥 ,𝑦 ))+𝑑(𝑦 ,𝐹(𝑦 ,𝑥 ))
𝑑(𝑥,𝑢)+𝑑(𝑦,V) 𝑑(𝑥,𝐹(𝑥,𝑦))+𝑑(𝑦,𝐹(𝑦,𝑥)) 𝑛+1 𝑛 𝑛 𝑛+1 𝑛 𝑛 ,
, , 2
2 2
𝑑(𝑥 ,𝐹(𝑥 ,𝑦 ))+𝑑(𝑦 ,𝐹(𝑦 ,𝑥 ))
𝑑(𝑢,𝐹(𝑢,V))+𝑑(V,𝐹(V,𝑢)) 𝑛 𝑛+1 𝑛+1 𝑛 𝑛+1 𝑛+1 )≤0,
, 2
2
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑑(𝑥,𝐹(𝑢,V))+𝑑(𝑦,𝐹(V,𝑢)) 𝑇( 𝑛+2 𝑛+1 𝑛+2 𝑛+1 ,
, 2
2
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑑(𝑢,𝐹(𝑥,𝑦))+𝑑(V,𝐹(𝑦,𝑥)) 𝑛+1 𝑛 𝑛+1 𝑛 ,
)≤0, 2
2
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
(9) 𝑛+1 𝑛+2 𝑛+1 𝑛+2 ,
2
foreach𝑥,𝑦,𝑢,V∈𝑋with𝑥⪰𝑢and𝑦⪯V.
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
Supposethateither 𝑛 𝑛+1 𝑛 𝑛+1 ,
2
(a)𝐹iscontinuousor
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
(b)𝑋hasthefollowingproperty: 𝑛+1 𝑛+1 2 𝑛+1 𝑛+1 ,
(i)ifanondecreasingsequence{𝑥𝑛}⊆𝑋with𝑥𝑛 → 𝑑(𝑥𝑛,𝑥𝑛+2)+𝑑(𝑦𝑛,𝑦𝑛+2))≤0.
𝑥,then𝑥𝑛 ⪯𝑥forall𝑛and 2
(ii)ifanonincreasingsequence{𝑦𝑛}⊆𝑋with𝑦𝑛 → (12)
𝑦,then𝑦𝑛 ⪰𝑦forall𝑛.
Since 𝑇 is nonincreasing in 6th variable, using triangle
If there exist 𝑥0,𝑦0 ∈ 𝑋 such that 𝑥0 ⪯ 𝐹(𝑥0,𝑦0) and 𝑦0 ⪰ inequality,weget
𝐹(𝑦0,𝑥0)then𝐹hasacoupledfixedpoint.
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
Proof. Supposethatthereexists(𝑥0,𝑦0) ∈ 𝑋×𝑋suchthat 𝑇( 𝑛+2 𝑛+1 2 𝑛+2 𝑛+1 ,
𝑥0 ⪯ 𝐹(𝑥0,𝑦0)and𝑦0 ⪰ 𝐹(𝑦0,𝑥0).Choose𝑥1,𝑦1 ∈ 𝑋such
that 𝑥1 = 𝐹(𝑥0,𝑦0) and 𝑦1 = 𝐹(𝑦0,𝑥0). Then 𝑥0 ⪯ 𝑥1 and 𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑦0 ⪰𝑦1.Nowchoose𝑥2,𝑦2 ∈𝑋suchthat𝑥2 =𝐹(𝑥1,𝑦1)and 𝑛+1 𝑛 2 𝑛+1 𝑛 ,
𝑦2 =𝐹(𝑦1,𝑥1).Since𝐹hasmixedmonotoneproperty,weget
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑥 =𝐹(𝑥 ,𝑦 )⪯𝐹(𝑥 ,𝑦 )=𝑥 , 𝑛+1 𝑛+2 𝑛+1 𝑛+2 ,
1 0 0 1 1 2 2
(10)
𝑦 =𝐹(𝑦 ,𝑥 )⪰𝐹(𝑦 ,𝑥 )=𝑦 .
1 0 0 1 1 2 𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑛 𝑛+1 𝑛 𝑛+1 ,0,
Continuingthisprocess,weobtainsequences{𝑥𝑛}and{𝑦𝑛} 2
in 𝑋 such that 𝑥𝑛+1 = 𝐹(𝑥𝑛,𝑦𝑛), 𝑦𝑛+1 = 𝐹(𝑦𝑛,𝑥𝑛) for 𝑛 = (𝑑(𝑥 ,𝑥 )+𝑑(𝑥 ,𝑥 )
0,1,2,...and 𝑛 𝑛+1 𝑛+1 𝑛+2
+𝑑(𝑦 ,𝑦 )+𝑑(𝑦 ,𝑦 ))
𝑥0 ⪯𝑥1 ⪯𝑥2 ⪯⋅⋅⋅ , 𝑦0 ⪰𝑦1 ⪰𝑦2 ⪰⋅⋅⋅ . (11) 𝑛 𝑛+1 𝑛+1 𝑛+2
Let𝑥𝑛+1 =𝐹(𝑥𝑛,𝑦𝑛)=𝐹𝑛(𝑥0,𝑦0)=𝐹(𝐹𝑛−1(𝑥0,𝑦0),𝐹𝑛−1(𝑦0, × (2)−1)≤0.
𝑥0)) and 𝑦𝑛+1 = 𝐹(𝑦𝑛,𝑥𝑛) = 𝐹𝑛(𝑦0,𝑥0) = 𝐹(𝐹𝑛−1(𝑦0,𝑥0),
𝐹𝑛−1(𝑥0,𝑦0))foreach𝑛=0,1,2,.... (13)
JournalofOperators 5
From(𝑇2),thereexists𝑓: 𝑅+ → 𝑅+,𝑓(𝑡) < 𝑡for𝑡 > 0such Similarly,wecanshowthat
that
𝛿 = 𝑑(𝑥𝑛+1,𝑥𝑛+2)+𝑑(𝑦𝑛+1,𝑦𝑛+2) li𝑘m→i∞nf𝑟𝑘 =li𝑘m→i∞nf𝑑(𝑥𝑚(𝑘),𝑥𝑛(𝑘))+𝑑(𝑦𝑚(𝑘),𝑦𝑛(𝑘))=𝜖.
𝑛+1 2 (24)
(14)
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
≤𝑓( 𝑛+1 𝑛 𝑛+1 𝑛 )=𝑓(𝛿 ).
2 𝑛 Hence
Then𝛿𝑛 ≠0forall𝑛.Hence,from(14),wehave lim 𝑟𝑘 = lim 𝑑(𝑥𝑚(𝑘),𝑥𝑛(𝑘))+𝑑(𝑦𝑚(𝑘),𝑦𝑛(𝑘))=𝜖. (25)
𝑘→∞ 𝑘→∞
𝛿𝑛+1 ≤𝑓(𝛿𝑛)<𝛿𝑛, ∀𝑛. (15)
Now
Therefore{𝛿𝑛}isstrictlydecreasingsequenceofpositivereals.
Hencethereexists𝛿≥0suchthat 𝜖≤ 𝑟 =𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑘 𝑚(𝑘) 𝑛(𝑘) 𝑚(𝑘) 𝑛(𝑘)
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑛l→im∞𝛿𝑛 =𝑛l→im∞ 𝑛+1 𝑛+2 2 𝑛+1 𝑛+2 =𝛿. (16) ≤ 𝑑(𝑥𝑚(𝑘),𝑥𝑚(𝑘)+1)+𝑑(𝑥𝑚(𝑘)+1,𝑥𝑛(𝑘)+1) (26)
+𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑛(𝑘)+1 𝑛(𝑘) 𝑚(𝑘) 𝑚(𝑘)+1
Weshowthat𝛿 = 0.Supposethat𝛿 > 0.Onletting𝑛 → ∞
in(13),weget +𝑑(𝑦 ,𝑦 )+𝑑(𝑦 ,𝑦 ).
𝑚(𝑘)+1 𝑛(𝑘)+1 𝑛(𝑘)+1 𝑛(𝑘)
𝑇(𝛿,𝛿,𝛿,𝛿,0,2𝛿)≤0. (17)
Since𝑚(𝑘)≥𝑛(𝑘),wehave𝑥𝑚(𝑘) ⪰𝑥𝑛(𝑘)and𝑦𝑚(𝑘) ⪯𝑦𝑛(𝑘)for
Then from (𝑇2), we have 𝛿 ≤ 𝑓(𝛿), a contradiction. Hence each𝑘.Hence,from(9),weget
𝛿=0.
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 ) 𝑇((𝑑(𝐹(𝑥 ,𝑦 ),𝐹(𝑥 ,𝑦 ))
That is, lim 𝑛+1 𝑛+2 𝑛+1 𝑛+2 =0. (18) 𝑚(𝑘) 𝑚(𝑘) 𝑛(𝑘) 𝑛(𝑘)
𝑛→∞ 2
+𝑑(𝐹(𝑦 ,𝑥 ),𝐹(𝑦 ,𝑥 )))
Nowweshowthat{𝑥𝑛}and{𝑦𝑛}areCauchysequencesin𝑋. 𝑚(𝑘) 𝑚(𝑘) 𝑛(𝑘) 𝑛(𝑘)
Supposethatatleastoneof{𝑥𝑛}or{𝑦𝑛}isnotCauchy.Then ×(2)−1,
there exist 𝜖 > 0 and sequences of positive integers {𝑚(𝑘)}
and{𝑛(𝑘)}with𝑚(𝑘)≥𝑛(𝑘)>𝑘suchthat
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑚(𝑘) 𝑛(𝑘) 𝑚(𝑘) 𝑛(𝑘) ,
𝑟𝑘 =𝑑(𝑥𝑚(𝑘),𝑥𝑛(𝑘))+𝑑(𝑦𝑚(𝑘),𝑦𝑛(𝑘))≥𝜖. (19) 2
𝑑(𝑥 ,𝐹(𝑥 ,𝑦 ))+𝑑(𝑦 ,𝐹(𝑦 ,𝑥 ))
Now choose 𝑚(𝑘) the least positive integer such that (19) 𝑚(𝑘) 𝑚(𝑘) 𝑚(𝑘) 𝑚(𝑘) 𝑚(𝑘) 𝑚(𝑘) ,
2
holds.Then
𝑑(𝑥 ,𝐹(𝑥 ,𝑦 ))+𝑑(𝑦 ,𝐹(𝑦 ,𝑥 ))
𝑑(𝑥𝑚(𝑘)−1,𝑥𝑛(𝑘))+𝑑(𝑦𝑚(𝑘)−1,𝑦𝑛(𝑘))<𝜖. (20) 𝑛(𝑘) 𝑛(𝑘) 𝑛(𝑘) 𝑛(𝑘) 𝑛(𝑘) 𝑛(𝑘) ,
2
Now 𝑑(𝑥 ,𝐹(𝑥 ,𝑦 ))+𝑑(𝑦 ,𝐹(𝑦 ,𝑥 ))
𝑚(𝑘) 𝑛(𝑘) 𝑛(𝑘) 𝑚(𝑘) 𝑛(𝑘) 𝑛(𝑘) ,
𝜖≤ 𝑟 =𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 ) 2
𝑘 𝑚(𝑘) 𝑛(𝑘) 𝑚(𝑘) 𝑛(𝑘)
𝑑(𝑥 ,𝐹(𝑥 ,𝑦 ))+𝑑(𝑦 ,𝐹(𝑦 ,𝑥 ))
≤ 𝑑(𝑥𝑚(𝑘),𝑥𝑚(𝑘)−1)+𝑑(𝑥𝑚(𝑘)−1,𝑥𝑛(𝑘)) 𝑛(𝑘) 𝑚(𝑘) 𝑚(𝑘) 𝑛(𝑘) 𝑚(𝑘) 𝑚(𝑘) )
(21) 2
+𝑑(𝑦 ,𝑦 )+𝑑(𝑦 ,𝑦 )
𝑚(𝑘) 𝑚(𝑘)−1 𝑚(𝑘)−1 𝑛(𝑘)
≤0,
< 𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )+𝜖.
𝑚(𝑘) 𝑚(𝑘)−1 𝑚(𝑘) 𝑚(𝑘)−1
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
Ontakinglimitsupremumas𝑘 → ∞,weget 𝑇( 𝑚(𝑘)+1 𝑛(𝑘)+1 2 𝑚(𝑘)+1 𝑛(𝑘)+1 ,
𝜖≤limsup𝑟𝑘 =limsup𝑑(𝑥𝑚(𝑘),𝑥𝑛(𝑘))+𝑑(𝑦𝑚(𝑘),𝑦𝑛(𝑘))≤𝜖. 𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑘→∞ 𝑘→∞ 𝑚(𝑘) 𝑛(𝑘) 𝑚(𝑘) 𝑛(𝑘) ,
2
(22)
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
Hence 𝑚(𝑘) 𝑚(𝑘)+1 𝑚(𝑘) 𝑚(𝑘)+1 ,
2
limsup𝑟𝑘 =limsup𝑑(𝑥𝑚(𝑘),𝑥𝑛(𝑘))+𝑑(𝑦𝑚(𝑘),𝑦𝑛(𝑘))=𝜖. 𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑘→∞ 𝑘→∞ 𝑛(𝑘) 𝑛(𝑘)+1 𝑛(𝑘) 𝑛(𝑘)+1 ,
(23) 2
6 JournalofOperators
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑚(𝑘) 𝑛(𝑘)+1 𝑚(𝑘) 𝑛(𝑘)+1 , Hence
2
𝜖 𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑑(𝑥𝑛(𝑘),𝑥𝑚(𝑘)+1)+𝑑(𝑦𝑛(𝑘),𝑦𝑚(𝑘)+1))≤0. 2 ≤𝑘l→im∞ 𝑚(𝑘)+1 𝑛(𝑘)+1 2 𝑚(𝑘)+1 𝑛(𝑘)+1 (32)
2 𝜖
≤𝑓( ), acontradiction.
(27) 2
Since 𝑇 is nonincreasing in 5th and 6th variable, using tri- Therefore{𝑥𝑛}and{𝑦𝑛}areCauchysequencesin𝑋.Since𝑋
angleinequality,weget is complete thereexists 𝑥,𝑦 ∈ 𝑋 withlim𝑛→∞𝑥𝑛 = 𝑥and
lim𝑛→∞𝑦𝑛 =𝑦.
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 ) Supposethat𝐹iscontinuous.Then
𝑇( 𝑚(𝑘)+1 𝑛(𝑘)+1 𝑚(𝑘)+1 𝑛(𝑘)+1 ,
2 𝑥=𝑛l→im∞𝑥𝑛+1 =𝑛l→im∞𝐹(𝑥𝑛,𝑦𝑛)=𝐹(𝑥,𝑦),
(33)
𝑑(𝑥𝑚(𝑘),𝑥𝑛(𝑘))+𝑑(𝑦𝑚(𝑘),𝑦𝑛(𝑘)), 𝑦=𝑛l→im∞𝑦𝑛+1 =𝑛l→im∞𝐹(𝑦𝑛,𝑥𝑛)=𝐹(𝑦,𝑥).
2
Therefore(𝑥,𝑦)isacoupledfixedpointof𝐹.
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑚(𝑘) 𝑚(𝑘)+1 𝑚(𝑘) 𝑚(𝑘)+1 , Now suppose that conditions (b) hold. Hence, we have
2 𝑥𝑛 ⪯𝑥forall𝑛and𝑦⪯𝑦𝑛forall𝑛.
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 ) Nowfrom(9),wehave
𝑛(𝑘) 𝑛(𝑘)+1 𝑛(𝑘) 𝑛(𝑘)+1 ,
2 𝑑(𝐹(𝑥,𝑦),𝐹(𝑥 ,𝑦 ))+𝑑(𝐹(𝑦,𝑥),𝐹(𝑦 ,𝑥 ))
𝑇( 𝑛 𝑛 𝑛 𝑛 ,
2
(𝑑(𝑥 ,𝑥 )+𝑑(𝑥 ,𝑥 )
𝑚(𝑘) 𝑚(𝑘)+1 𝑚(𝑘)+1 𝑛(𝑘)+1
𝑑(𝑥,𝑥 )+𝑑(𝑦,𝑦 ) 𝑑(𝑥,𝐹(𝑥,𝑦))+𝑑(𝑦,𝐹(𝑦,𝑥))
+𝑑(𝑦𝑚(𝑘),𝑦𝑚(𝑘)+1)+𝑑(𝑦𝑚(𝑘)+1,𝑦𝑛(𝑘)+1)) 𝑛 𝑛 , ,
2 2
×(2)−1,
𝑑(𝑥 ,𝐹(𝑥 ,𝑦 ))+𝑑(𝑦 ,𝐹(𝑦 ,𝑥 ))
𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 ,
(𝑑(𝑥 ,𝑥 )+𝑑(𝑥 ,𝑥 ) 2
𝑛(𝑘) 𝑛(𝑘)+1 𝑛(𝑘)+1 𝑚(𝑘)+1
𝑑(𝑥,𝐹(𝑥 ,𝑦 ))+𝑑(𝑦,𝐹(𝑦 ,𝑥 ))
+𝑑(𝑦 ,𝑦 )+𝑑(𝑦 ,𝑦 )) 𝑛 𝑛 𝑛 𝑛 ,
𝑛(𝑘) 𝑛(𝑘)+1 𝑛(𝑘)+1 𝑚(𝑘)+1
2
×(2)−1)≤0. 𝑑(𝑥 ,𝐹(𝑥,𝑦))+𝑑(𝑦 ,𝐹(𝑦,𝑥))
𝑛 𝑛 )≤0.
2
(28) (34)
Onletting𝑘 → ∞,weget Onletting𝑛 → ∞,weget
𝑑(𝐹(𝑥,𝑦),𝑥)+𝑑(𝐹(𝑦,𝑥),𝑦)
𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑇( lim 𝑚(𝑘)+1 𝑛(𝑘)+1 𝑚(𝑘)+1 𝑛(𝑘)+1 , 𝑇( 2 ,0,
𝑘→∞ 2
(29) 𝑑(𝑥,𝐹(𝑥,𝑦))+𝑑(𝑦,𝐹(𝑦,𝑥))
𝜖 𝜖 𝜖 ,0,0, (35)
,0,0, , )≤0. 2
2 2 2
𝑑(𝑥,𝐹(𝑥,𝑦))+𝑑(𝑦,𝐹(𝑦,𝑥))
)≤0.
From(𝑇2),weget 2
𝑘l→im∞𝑑(𝑥𝑚(𝑘)+1,𝑥𝑛(𝑘)+1)+2𝑑(𝑦𝑚(𝑘)+1,𝑦𝑛(𝑘)+1) ≤𝑓(2𝜖). Ififx𝑑ed(𝐹p(o𝑥i,n𝑦t)o,f𝑥𝐹).+𝑑(𝐹(𝑦,𝑥),𝑦) = 0,then(𝑥,𝑦)isacoupled
(30) If 𝑑(𝐹(𝑥,𝑦),𝑥) + 𝑑(𝐹(𝑦,𝑥),𝑦) > 0, then (35) yields a
contradiction to (𝑇3). Hence 𝐹(𝑥,𝑦) = 𝑥 and 𝐹(𝑦,𝑥) = 𝑦.
Nowonletting𝑘 → ∞,in(26),weget Therefore(𝑥,𝑦)isacoupledfixedpointof𝐹.
𝜖≤ 𝑘l→im∞[𝑑(𝑥𝑚(𝑘),𝑥𝑚(𝑘)+1) +𝑑(𝑥𝑚(𝑘)+1,𝑥𝑛(𝑘)+1) fixedThpeooirnetmof16𝐹d.oThesenfootllgouwairnagnteexeatmhepluensiuqpupenoertsssothficsoauspsleerd-
tion.
+𝑑(𝑥 ,𝑥 )+𝑑(𝑦 ,𝑦 )
𝑛(𝑘)+1 𝑛(𝑘) 𝑚(𝑘) 𝑚(𝑘)+1
(31) Example 17. Let 𝑋 = {2,4,6,8} with the usual metric. We
+𝑑(𝑦 ,𝑦 )+𝑑(𝑦 ,𝑦 )]
𝑚(𝑘)+1 𝑛(𝑘)+1 𝑛(𝑘)+1 𝑛(𝑘) defineapartialorder⪯on𝑋asfollows:
= lim [𝑑(𝑥𝑚(𝑘)+1,𝑥𝑛(𝑘)+1)+𝑑(𝑦𝑚(𝑘)+1,𝑦𝑛(𝑘)+1)]. ⪯={(2,2),(4,4),(6,6),(8,8),(2,8)}. (36)
𝑘→∞
JournalofOperators 7
We define 𝑇 : (𝑅+)6 → 𝑅 by 𝑇(𝑡1,...,𝑡6) = 𝑡1 − 𝛼(𝑡4𝑡5𝑡6/ Hence inequality (9) holds. Therefore all the hypotheses of
(𝑡2 +𝑡3+1)),𝑡1,𝑡2,...,𝑡6 ≥ 0and𝛼 = 15/16.Then𝑇 ∈ S Theorem16holdand(8,4)and(4,4)aretwocoupledfixed
(Example 11). pointsof𝐹.
Let
In the following theorem, we prove the uniqueness of
𝐴= {(2,2),(2,8),(4,2),(4,4),(4,8), coupledfixedpointsbyusinganimplicitrelationinS.
(6,2),(6,8),(8,2),(8,8)} Wedefineapartialorder⪯1on𝑋×𝑋by(𝑥,𝑦)⪯1(𝑢,V)if
𝑥⪯𝑢,𝑦⪰V.
(37)
𝐵= {(2,4),(8,4),(8,6)},
Theorem18. InadditiontothehypothesesofTheorem16with
𝐶= {(2,6),(4,6),(6,4),(6,6)}. 𝑇∈Ssupposethatthefollowingconditionholds:
Wedefine𝐹:𝑋×𝑋 → 𝑋by for any (𝑥,𝑦) and (𝑢,V) in 𝑋×𝑋
there exists (𝑧,𝑡)∈𝑋×𝑋 that is comparable with
{{4, if (𝑥,𝑦)∈𝐴
𝐹(𝑥,𝑦)={{8, if (𝑥,𝑦)∈𝐵 (38) (𝑥,𝑦) and (𝑢,V).
{2, if (𝑥,𝑦)∈𝐶. (40)
Clearly𝐹satisfiesthemixedmonotoneproperty.Wechoose Then𝐹hasauniquecoupledfixedpoint.
(t(h𝑢𝑥a,0tV,𝑦)𝑥0i0n)⪯𝑋=𝐹×((2𝑥𝑋,04,)s𝑦.u0Thc)haetnnhda𝐹t𝑦(𝑥0𝑥0⪰⪰,𝑦𝐹𝑢0()a𝑦n0=d,𝑥𝑦80)a⪯.nThdVae𝐹re(e𝑦let0hm,e𝑥e0fno)tlsl=o(w𝑥4,in𝑦sg)o,: Pfixroeodf.pWoinitth(t𝑥h,e𝑦h),ypthoathteisse,s𝑥of=Th𝐹eo(𝑥re,m𝑦)16an,d𝐹𝑦has=a c𝐹o(u𝑦p,l𝑥e)d.
(2,2), (2,2); (2,2), (2,8); (2,4), (2,4); (2,6), (2,6); (2,8), Supposethatifpossiblethereexists(𝑢,V) ∈ 𝑋×𝑋suchthat
(2,8); (4,2), (4,2); (4,2), (4,8); (4,4), (4,4); (4,6), (4,6); 𝑢=𝐹(𝑢,V)andV=𝐹(V,𝑢).Weshowthat𝑥=𝑢and𝑦=V.
(4,8), (4,8); (6,2), (6,2); (6,2), (6,8); (6,4), (6,4); (6,6), Casei.(𝑥,𝑦)and(𝑢,V)arecomparable.
((68,,62));, ((68,,88));, ((68,,84));, ((82,,42));, ((28,,24));, ((88,,24)),; ((28,,86));, ((28,,62));, ((88,,62)),; ThatWisi,th𝑥o⪰ut𝑢loasnsdof𝑦g⪯enVe.rality,weassumethat(𝑢,V)⪯1(𝑥,𝑦).
(8,6);(8,8),(2,8);(8,8),(8,8).Wenowverifyinequality(9) Supposethateither𝑥≠𝑢or𝑦≠V.Then
fortheabovepairs.
𝑑(𝐹(𝑥,𝑦),𝐹(𝑢,V))+𝑑(𝐹(𝑦,𝑥),𝐹(V,𝑢))
Case i. (𝑥,𝑦), (𝑢,V) ∈ 𝑋×𝑋 such that(𝑥,𝑦), (𝑢,V), (𝑦,𝑥), 𝑇( ,
2
(V,𝑢)areeitherin𝐴or𝐵or𝐶or(𝑥,𝑦)=(𝑢,V).
Inthiscase(𝑑(𝐹(𝑥,𝑦),𝐹(𝑢,V)) + 𝑑(𝐹(𝑦,𝑥),𝐹(V,𝑢)))/2=0 𝑑(𝑥,𝑢)+𝑑(𝑦,V)
sothatinequality(9)holdstrivially. ,
2
Caseii.(𝑥,𝑦)=(6,2),(𝑢,V)=(6,8)or(𝑥,𝑦)=(6,8),(𝑢,V)= 𝑑(𝑥,𝐹(𝑥,𝑦))+𝑑(𝑦,𝐹(𝑦,𝑥))
(2,6). 2 ,
Inthiscase
𝑑(𝑢,𝐹(𝑢,V))+𝑑(V,𝐹(V,𝑢))
,
𝑑(𝐹(𝑥,𝑦),𝐹(𝑢,V))+𝑑(𝐹(𝑦,𝑥),𝐹(V,𝑢)) 2
2 𝑑(𝑥,𝐹(𝑢,V))+𝑑(𝑦,𝐹(V,𝑢)) (41)
,
1516 15 2
=3= =
16 5 16 𝑑(𝑢,𝐹(𝑥,𝑦))+𝑑(V,𝐹(𝑦,𝑥))
)≤0,
𝑑(𝑢,𝐹(𝑢,V))+𝑑(V,𝐹(V,𝑢)) 2
×( )
2
𝑑(𝑥,𝑢)+𝑑(𝑦,V) 𝑑(𝑥,𝑢)+𝑑(𝑦,V)
𝑇( , ,0,0,
𝑑(𝑥,𝐹(𝑢,V))+𝑑(𝑦,𝐹(V,𝑢)) 2 2
×( )
2 (39) 𝑑(𝑥,𝑢)+𝑑(𝑦,V) 𝑑(𝑢,𝑥)+𝑑(V,𝑦)
, )≤0.
𝑑(𝑢,𝐹(𝑥,𝑦))+𝑑(V,𝐹(𝑦,𝑥)) 2 2
×( )
2
Then,from(𝑇2),thereexists𝑓:𝑅+ → 𝑅+,𝑓(𝑡)<𝑡for𝑡>0
𝑑(𝑥,𝑢)+𝑑(𝑦,V) suchthat
×(
2
𝑑(𝑥,𝑢)+𝑑(𝑦,V) 𝑑(𝑥,𝑢)+𝑑(𝑦,V)
≤𝑓( ), (42)
𝑑(𝑥,𝐹(𝑥,𝑦))+𝑑(𝑦,𝐹(𝑦,𝑥)) −1 2 2
+ +1) .
2
acontradiction.Hence𝑥=𝑢and𝑦=V.
8 JournalofOperators
Caseii.Thereexists(𝑧,𝑡)∈𝑋×𝑋whichiscomparablewith 𝑑(𝑥,𝐹(𝑥,𝑦))+𝑑(𝑦,𝐹(𝑦,𝑥)),
(𝑥,𝑦)and(𝑢,V). 2
Withoutlossofgenerality,weassumethat(𝑥,𝑦)⪯1(𝑧,𝑡) 𝑑(𝐹𝑛(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛(𝑡,𝑧),𝑦)
and(𝑢,V)⪯1(𝑧,𝑡),thatis,𝑧⪰𝑥,𝑡⪯𝑦and𝑧⪰𝑢,𝑡⪯V. ,
We denote 𝐹𝑛+1(𝑥,𝑦) = 𝐹(𝐹𝑛(𝑥,𝑦),𝐹𝑛(𝑦,𝑥)) for each 2
𝑥,𝑦∈𝑋. (𝑑(𝑥,𝐹(𝐹𝑛(𝑧,𝑡)),𝐹𝑛(𝑡,𝑧))
Since𝐹hasmixedmonotoneproperty,wehave
+𝑑(𝑦,𝐹(𝐹𝑛(𝑡,𝑧),𝐹𝑛(𝑧,𝑡))))
𝐹(𝑥,𝑦)⪯𝐹(𝑧,𝑡), 𝐹(𝑢,V)⪯𝐹(𝑧,𝑡),
(43) ×(2)−1)≤0.
𝐹(𝑦,𝑥)⪰𝐹(𝑡,𝑧), 𝐹(V,𝑢)⪰𝐹(𝑡,𝑧).
(47)
Nowsupposethat
Thisimplies
𝐹𝑛(𝑥,𝑦)⪯𝐹𝑛(𝑧,𝑡), 𝐹𝑛(𝑢,V)⪯𝐹𝑛(𝑧,𝑡),
𝑑(𝐹𝑛+1(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛+1(𝑡,𝑧),𝑦)
𝐹𝑛(𝑦,𝑥)⪰𝐹𝑛(𝑡,𝑧), 𝐹𝑛(V,𝑢)⪰𝐹𝑛(𝑡,𝑧) 𝑇( 2 ,
for some 𝑛. 𝑑(𝐹𝑛+1(𝑡,𝑧),𝑥)+𝑑(𝐹𝑛+1(𝑧,𝑡),𝑦)
,
𝐹𝑛+1(𝑥,𝑦)=𝐹(𝐹𝑛(𝑥,𝑦),𝐹𝑛(𝑦,𝑥)) 2
⪯𝐹(𝐹𝑛(𝑧,𝑡),𝐹𝑛(𝑡,𝑧))=𝐹𝑛+1(𝑧,𝑡), 𝑑(𝐹𝑛(𝑧,𝑡),𝐹𝑛+1(𝑧,𝑡))+𝑑(𝐹𝑛(𝑡,𝑧),𝐹𝑛+1(𝑡,𝑧))
,0,
2
𝐹𝑛+1(𝑢,V)=𝐹(𝐹𝑛(𝑢,V),𝐹𝑛(V,𝑢))
(44) 𝑑(𝐹𝑛(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛(𝑡,𝑧),𝑦)
,
⪯𝐹(𝐹𝑛(𝑧,𝑡),𝐹𝑛(𝑡,𝑧))=𝐹𝑛+1(𝑧,𝑡), 2
𝐹𝑛+1(𝑦,𝑥)=𝐹(𝐹𝑛(𝑦,𝑥),𝐹𝑛(𝑥,𝑦)) 𝑑(𝑥,𝐹𝑛+1(𝑧,𝑡))+𝑑(𝑦,𝐹𝑛+1(𝑡,𝑧))
)≤0.
2
⪰𝐹(𝐹𝑛(𝑡,𝑧),𝐹𝑛(𝑧,𝑡))=𝐹𝑛+1(𝑡,𝑧),
(48)
𝐹𝑛+1(V,𝑢)=𝐹(𝐹𝑛(V,𝑢),𝐹𝑛(𝑢,V)) Since 𝑇 is nonincreasing in 3rd variable, using triangle
inequality,weget
⪰𝐹(𝐹𝑛(𝑡,𝑧),𝐹𝑛(𝑧,𝑡))=𝐹𝑛+1(𝑡,𝑧).
𝑑(𝐹𝑛+1(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛+1(𝑡,𝑧),𝑦)
Hencebymathematicalinduction, 𝑇( ,
2
𝐹𝑛(𝑥,𝑦)⪯𝐹𝑛(𝑧,𝑡), 𝐹𝑛(𝑢,V)⪯𝐹𝑛(𝑧,𝑡),
𝑑(𝐹𝑛+1(𝑡,𝑧),𝑥)+𝑑(𝐹𝑛+1(𝑧,𝑡),𝑦)
𝐹𝑛(𝑦,𝑥)⪰𝐹𝑛(𝑡,𝑧), 𝐹𝑛(V,𝑢)⪰𝐹𝑛(𝑡,𝑧) (45) ,
2
for each 𝑛=0,1,2,.... (𝑑(𝐹𝑛(𝑧,𝑡),𝑥)+𝑑(𝑥,𝐹𝑛+1(𝑧,𝑡))
Wenowshowthat
+𝑑(𝐹𝑛(𝑡,𝑧),𝑦)+𝑑(𝑦,𝐹𝑛+1(𝑡,𝑧))) (49)
lim 𝐹𝑛(𝑧,𝑡)=𝑥, lim 𝐹𝑛(𝑡,𝑧)=𝑦. (46)
𝑛→∞ 𝑛→∞ ×(2)−1,0,
Using(9),weget
𝑑(𝐹𝑛(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛(𝑡,𝑧),𝑦)
𝑇((𝑑(𝐹(𝐹𝑛(𝑧,𝑡),𝐹𝑛(𝑡,𝑧)),𝐹(𝑥,𝑦)) 2 ,
+𝑑(𝐹(𝐹𝑛(𝑡,𝑧),𝐹𝑛(𝑧,𝑡)),𝐹(𝑦,𝑥))) 𝑑(𝑥,𝐹𝑛+1(𝑧,𝑡))+𝑑(𝑦,𝐹𝑛+1(𝑡,𝑧))
)≤0.
2
×(2)−1,
𝑑(𝐹𝑛(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛(𝑡,𝑧),𝑦) Therefore,from(𝑇2),thereexists𝑓: 𝑅+ → 𝑅+,𝑓(𝑡) < 𝑡for
, 𝑡>0suchthat
2
𝑑(𝐹𝑛+1(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛+1(𝑡,𝑧),𝑦)
(𝑑(𝐹𝑛(𝑧,𝑡),𝐹(𝐹𝑛(𝑧,𝑡)),𝐹𝑛(𝑡,𝑧))
2
+𝑑(𝐹𝑛(𝑡,𝑧),𝐹(𝐹𝑛(𝑡,𝑧),𝐹𝑛(𝑧,𝑡)))) 𝑑(𝐹𝑛(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛(𝑡,𝑧),𝑦) (50)
≤𝑓( ).
×(2)−1, 2
JournalofOperators 9
If𝑑(𝐹𝑛(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛(𝑡,𝑧),𝑦)=0forsome𝑛then That is, lim 𝐹𝑛(𝑧,𝑡)=𝑥, lim 𝐹𝑛(𝑡,𝑧)=𝑦.
𝑛→∞ 𝑛→∞
(53)
𝐹𝑛+1(𝑧,𝑡)=𝐹(𝐹𝑛(𝑧,𝑡),𝐹𝑛(𝑡,𝑧))=𝐹(𝑥,𝑦)=𝑥,
(51) Since(𝑢,V)isalsoacoupledfixedpointof𝐹,wehave
𝐹𝑛+1(𝑡,𝑧)=𝐹(𝐹𝑛(𝑡,𝑧),𝐹𝑛(𝑧,𝑡))=𝐹(𝑦,𝑥)=𝑦.
lim 𝐹𝑛(𝑧,𝑡)=𝑢, lim 𝐹𝑛(𝑡,𝑧)=V. (54)
𝑛→∞ 𝑛→∞
Hence,𝐹𝑛+𝑘(𝑧,𝑡) = 𝑥and𝐹𝑛+𝑘(𝑡,𝑧) = 𝑦for𝑘 = 0,1,2,..., Hence, by theuniquenessoflimit,we have𝑥 = 𝑢 and𝑦 =
thatis,lim𝑛→∞𝐹𝑛(𝑧,𝑡)=𝑥andlim𝑛→∞𝐹𝑛(𝑡,𝑧)=𝑦,sothat V.
(46)holds.
Supposethat𝑑(𝐹𝑛(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛(𝑡,𝑧),𝑦) > 0forall𝑛; Remark 19. In Example17, 𝑇 does not belong to 𝑆 (Exam-
ple 15) and condition (40) does not hold and 𝑇 has two
then,from(49),weget
coupledfixedpoints.
𝑑(𝐹𝑛+1(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛+1(𝑡,𝑧),𝑦) Theorem20. InadditiontothehypothesesofTheorem16with
2 𝑇∈Ssupposethat𝑥0and𝑦0arecomparable.Further,assume
that(40)holds.Then𝐹hasauniquecoupledfixedpoint(𝑥,𝑦)
𝑑(𝐹𝑛(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛(𝑡,𝑧),𝑦) and𝑥=𝑦.
≤𝑓( ) (52)
2
Proof. From the proof of Theorem16, we have that 𝐹 has a
𝑑(𝐹𝑛(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛(𝑡,𝑧),𝑦) coupledfixedpointsay(𝑥,𝑦).Thatis,𝑥 = 𝐹(𝑥,𝑦)and𝑦 =
< , ∀𝑛.
2 𝐹(𝑦,𝑥).Supposethat𝑥0 ⪯𝑦0.Weshowthat
Therefore{(𝑑(𝐹𝑛(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛(𝑡,𝑧),𝑦))/2}isadecreasing 𝑥𝑛 ⪯𝑦𝑛, ∀𝑛, (55)
sequenceofnonnegativerealnumbers.Thus,thereexists𝛿≥ usingprincipleofmathematicalinductionon𝑛,where𝑥𝑛 =
0suchthatlim𝑛→∞(𝑑(𝐹𝑛(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛(𝑡,𝑧),𝑦))/2=𝛿. 𝐹(𝑥𝑛−1,𝑦𝑛−1) and 𝑦𝑛 = 𝐹(𝑦𝑛−1,𝑥𝑛−1), 𝑛 = 0,1,2,... are the
If𝛿 > 0,then,onletting𝑛 → ∞in(49),weget𝑇(𝛿,𝛿, sequencesdefinedintheproofofTheorem16.Supposethat
2𝛿,0,𝛿,𝛿)≤0. (55) is true for some 𝑛 ≥ 0. Then, by mixed monotone
Then, from (𝑇), we have 𝛿 ≤ 𝑓(𝛿), a contradiction. propertyof𝐹,
2
Hence𝛿=0.
𝑥𝑛+1 =𝐹(𝑥𝑛,𝑦𝑛)≤𝐹(𝑦𝑛,𝑥𝑛)=𝑦𝑛+1. (56)
𝑑(𝐹𝑛(𝑧,𝑡),𝑥)+𝑑(𝐹𝑛(𝑡,𝑧),𝑦) Thus(55)istrueforeach𝑛 = 1,2,3,....Now,from(9),we
That is, lim =0.
𝑛→∞ 2 have
𝑑(𝐹(𝐹𝑛(𝑥,𝑦),𝐹𝑛(𝑦,𝑥)),𝐹(𝐹𝑛(𝑦,𝑥),𝐹𝑛(𝑥,𝑦)))+𝑑(𝐹(𝐹𝑛(𝑦,𝑥),𝐹𝑛(𝑥,𝑦)),𝐹(𝐹𝑛(𝑥,𝑦),𝐹𝑛(𝑦,𝑥)))
𝑇( ,
2
𝑑(𝐹𝑛(𝑥,𝑦),𝐹𝑛(𝑦,𝑥))+𝑑(𝐹𝑛(𝑦,𝑥),𝐹𝑛(𝑥,𝑦))
,
2
𝑑(𝐹𝑛(𝑥,𝑦),𝐹(𝐹𝑛(𝑥,𝑦),𝐹𝑛(𝑦,𝑥)))+𝑑(𝐹𝑛(𝑦,𝑥),𝐹(𝐹𝑛(𝑦,𝑥),𝐹𝑛(𝑥,𝑦)))
,
2
(57)
𝑑(𝐹𝑛(𝑦,𝑥),𝐹(𝐹𝑛(𝑦,𝑥),𝐹𝑛(𝑥,𝑦)))+𝑑(𝐹𝑛(𝑥,𝑦),𝐹(𝐹𝑛(𝑥,𝑦),𝐹𝑛(𝑦,𝑥)))
2
𝑑(𝐹𝑛(𝑥,𝑦),𝐹(𝐹𝑛(𝑦,𝑥),𝐹𝑛(𝑥,𝑦)))+𝑑(𝐹𝑛(𝑦,𝑥),𝐹(𝐹𝑛(𝑥,𝑦),𝐹𝑛(𝑦,𝑥)))
,
2
𝑑(𝐹𝑛(𝑦,𝑥),𝐹(𝐹𝑛(𝑥,𝑦),𝐹𝑛(𝑦,𝑥)))+𝑑(𝐹𝑛(𝑥,𝑦),𝐹(𝐹𝑛(𝑦,𝑥),𝐹𝑛(𝑥,𝑦)))
)≤0.
2
10 JournalofOperators
Thisimplies map𝜓 : 𝑅+ → 𝑅+,𝜓(𝑡) < 𝑡for𝑡 > 0,𝜓(𝑡) = 0ifandonlyif
𝑡=0suchthat
𝑑(𝐹𝑛+1(𝑥,𝑦),𝐹𝑛+1(𝑦,𝑥))+𝑑(𝐹𝑛+1(𝑦,𝑥),𝐹𝑛+1(𝑥,𝑦))
𝑇( , 𝑑(𝑥,𝑢)+𝑑(𝑦,V)
2 𝑑(𝐹(𝑥,𝑦),𝐹(𝑢,V))≤
2
𝑑(𝐹𝑛(𝑥,𝑦),𝐹𝑛(𝑦,𝑥))+𝑑(𝐹𝑛(𝑦,𝑥),𝐹𝑛(𝑥,𝑦)) (61)
𝑑(𝑥,𝑢)+𝑑(𝑦,V)
,
2 −𝜓( ),
2
𝑑(𝐹𝑛(𝑥,𝑦),𝐹𝑛+1(𝑥,𝑦))+𝑑(𝐹𝑛(𝑦,𝑥),𝐹𝑛+1(𝑦,𝑥))
2 , foreach𝑥,𝑦,𝑢,V∈𝑋with𝑥⪰𝑢and𝑦⪯V.
Supposethateither(a)or(b)ofTheorem16holds.
𝑑(𝐹𝑛(𝑦,𝑥),𝐹𝑛+1(𝑦,𝑥))+𝑑(𝐹𝑛(𝑥,𝑦),𝐹𝑛+1(𝑥,𝑦))
2 If there exist 𝑥0,𝑦0 ∈ 𝑋 such that 𝑥0 ⪯ 𝐹(𝑥0,𝑦0) and 𝑦0 ⪰
𝐹(𝑦0,𝑥0)then𝐹hasacoupledfixedpoint.
𝑑(𝐹𝑛(𝑥,𝑦),𝐹𝑛+1(𝑦,𝑥))+𝑑(𝐹𝑛(𝑦,𝑥),𝐹𝑛+1(𝑥,𝑦))
,
2 Proof. From(61),weobtain
𝑑(𝐹𝑛(𝑦,𝑥),𝐹𝑛+1(𝑥,𝑦))+𝑑(𝐹𝑛(𝑥,𝑦),𝐹𝑛+1(𝑦,𝑥)) 𝑑(𝑦,V)+𝑑(𝑥,𝑢)
) 𝑑(𝐹(V,𝑢),𝐹(𝑦,𝑥))≤
2 2
(62)
≤0. 𝑑(𝑦,V)+𝑑(𝑥,𝑢)
−𝜓( ).
(58)
2
Onletting𝑛 → ∞,weget
Adding (61) and (62), we obtain inequality (60). Hence the
conclusionfollowsfromCorollary22.
𝑇(𝑑(𝑥,𝑦),𝑑(𝑥,𝑦),0,0,𝑑(𝑥,𝑦),𝑑(𝑥,𝑦))≤0, (59)
Remark 24. Corollary23 is another version of Theorem4
acontradictionto(𝑇),if𝑑(𝑥,𝑦)>0.Hence,𝑑(𝑥,𝑦)=0;that withdifferent𝜓.
3
is,𝑥=𝑦.
Corollary25. Let(𝑋,⪯)beapartiallyorderedsetandsuppose
that𝑑is a metricon𝑋suchthat (𝑋,𝑑)is acompletemetric
Remark 21. Theorem16 is an extension of Theorem5 to
coupledfixedpointswithanimplicitrelationof𝑆. space. Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a mapping satisfying mixed
monotonepropertyandsupposethatthereexistsacontinuous
Corollary22. Let(𝑋,⪯)beapartiallyorderedsetandsuppose map𝜑:𝑅+ → 𝑅+,𝜑(𝑡)<𝑡for𝑡>0,𝜑(0)=0suchthat
that𝑑is ametricon 𝑋suchthat (𝑋,𝑑)is acompletemetric 𝑑(𝐹(𝑥,𝑦),𝐹(𝑢,V))+𝑑(𝐹(𝑦,𝑥),𝐹(V,𝑢))
space. Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a mapping satisfying mixed
2
monotonepropertyandsupposethatthereexistsacontinuous
(63)
map𝜓 : 𝑅+ → 𝑅+,𝜓(𝑡) < 𝑡for𝑡 > 0,𝜓(𝑡) = 0ifandonlyif 𝑑(𝑥,𝑢)+𝑑(𝑦,V)
𝑡=0suchthat ≤𝜑( 2 ),
𝑑(𝐹(𝑥,𝑦),𝐹(𝑢,V))+𝑑(𝐹(𝑦,𝑥),𝐹(V,𝑢)) foreach𝑥,𝑦,𝑢,V∈𝑋with𝑥⪰𝑢and𝑦⪯V.
2
Supposethateither(a)or(b)ofTheorem16holds.
(60)
𝑑(𝑥,𝑢)+𝑑(𝑦,V) 𝑑(𝑥,𝑢)+𝑑(𝑦,V) If there exist 𝑥0,𝑦0 ∈ 𝑋 such that 𝑥0 ⪯ 𝐹(𝑥0,𝑦0) and 𝑦0 ⪰
≤ 2 −𝜓( 2 ), 𝐹(𝑦0,𝑥0)then𝐹hasacoupledfixedpoint.
foreach𝑥,𝑦,𝑢,V∈𝑋with𝑥⪰𝑢and𝑦⪯V. P𝜑r(o𝑡2o)f,.𝑡B1,y𝑡d2,e.fi.n.,in𝑡6g≥𝑇0:,(𝑅w+e)o6b→tain𝑅(i6n3()9.)Haesn𝑇c(e𝑡1th,.e..c,o𝑡n6c)lu=s𝑡io1−n
Supposethateither(a)or(b)ofTheorem16holds.
followsfromTheorem16.
If there exist 𝑥0,𝑦0 ∈ 𝑋 such that 𝑥0 ⪯ 𝐹(𝑥0,𝑦0) and 𝑦0 ⪰
𝐹(𝑦0,𝑥0)then𝐹hasacoupledfixedpoint. Corollary26. Let(𝑋,⪯)beapartiallyorderedsetandsuppose
that𝑑is a metricon𝑋suchthat (𝑋,𝑑)is acompletemetric
Proof. Bydefining𝑇 : (𝑅+)6 → 𝑅in(9)as𝑇(𝑡1,...,𝑡6) = space. Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a mapping satisfying mixed
𝑡1 −(𝑡2 −𝜓(𝑡2)),𝑡1,𝑡2,...,𝑡6 ≥ 0,weobtain(60).Hencethe monotonepropertyandsupposethatthereexistsacontinuous
conclusionfollowsfromTheorem16. map𝜑:𝑅+ → 𝑅+,𝜑(𝑡)<𝑡for𝑡>0,𝜑(0)=0suchthat
Corollary23. Let(𝑋,⪯)beapartiallyorderedsetandsuppose 𝑑(𝑥,𝑢)+𝑑(𝑦,V)
that𝑑is ametricon 𝑋suchthat (𝑋,𝑑)is acompletemetric 𝑑(𝐹(𝑥,𝑦),𝐹(𝑢,V))≤𝜑( 2 ), (64)
space. Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a mapping satisfying mixed
monotonepropertyandsupposethatthereexistsacontinuous foreach𝑥,𝑦,𝑢,V∈𝑋with𝑥⪰𝑢and𝑦⪯V.
Description:is a proper subset of S, and these classes are more general than the class of implicit relations defined by Altun and Simsek (2010). We prove the existence of coupled fixed points for the maps satisfying an implicit relation in S. These coupled fixed points need not be unique. In order to establish