Table Of ContentReactiveExtrusion
Reactive Extrusion
PrinciplesandApplications
EditedbyGünterBeyerandChristianHopmann
Editors AllbookspublishedbyWiley-VCHare
carefullyproduced.Nevertheless,authors,
Dr.GünterBeyer editors,andpublisherdonotwarrantthe
HeadofDepartment informationcontainedinthesebooks,
Chem.-phys.Laboratories includingthisbook,tobefreeoferrors.
KabelwerkEupenAG Readersareadvisedtokeepinmindthat
MalmedyerStraße9 statements,data,illustrations,procedural
4700Eupen detailsorotheritemsmayinadvertently
Belgium beinaccurate.
LibraryofCongressCardNo.:appliedfor
Prof.Dr.ChristianHopmann
RWTHAachenUniversity
InstituteofPlasticsProcessing(IKV) BritishLibraryCataloguing-in-Publication
52056Aachen Data
Germany Acataloguerecordforthisbookis
availablefromtheBritishLibrary.
Bibliographicinformationpublishedby
theDeutscheNationalbibliothek
TheDeutscheNationalbibliothek
liststhispublicationintheDeutsche
Nationalbibliografie;detailed
bibliographicdataareavailableonthe
Internetat<http://dnb.d-nb.de>.
©2018Wiley-VCHVerlagGmbH&Co.
KGaA,Boschstr.12,69469
Weinheim,Germany
Allrightsreserved(includingthoseof
translationintootherlanguages).Nopart
ofthisbookmaybereproducedinany
form–byphotoprinting,
microfilm,oranyothermeans–nor
transmittedortranslatedintoamachine
languagewithoutwritten
permissionfromthepublishers.
Registerednames,trademarks,etc.used
inthisbook,evenwhennotspecifically
markedassuch,arenottobeconsidered
unprotectedbylaw.
PrintISBN:978-3-527-34098-9
ePDFISBN:978-3-527-80153-4
ePubISBN:978-3-527-80155-8
MobiISBN:978-3-527-80156-5
oBookISBN:978-3-527-80154-1
CoverDesignSchulzGrafik-Design,
Fußgönheim,Germany
Typesetting SPiGlobal,Chennai,India
PrintingandBinding
Printedonacid-freepaper
v
Contents
Preface xiii
ListofContributors xv
PartI Introduction 1
1 IntroductiontoReactiveExtrusion 3
ChristianHopmann,MaximilianAdamy,andAndreasCohnen
References 9
PartII IntroductiontoTwin-ScrewExtruderforReactive
Extrusion 11
2 TheCo-rotatingTwin-ScrewExtruderforReactive
Extrusion 13
FrankLechner
2.1 Introduction 13
2.2 DevelopmentandKeyFiguresoftheCo-rotatingTwin-Screw
Extruder 14
2.3 ScrewElements 16
2.4 Co-rotatingTwin-ScrewExtruder–UnitOperations 22
2.4.1 Feeding 23
2.4.2 UpstreamFeeding 23
2.4.3 DownstreamFeeding 24
2.4.4 MeltingMechanisms 24
2.4.5 ThermalEnergyTransfer 24
2.4.6 MechanicalEnergyTransfer 25
2.4.7 MixingMechanisms 25
2.4.8 Devolatilization/Degassing 25
2.4.9 Discharge 26
2.5 SuitabilityofTwin-ScrewExtrudersforChemicalReactions 26
2.6 ProcessingofTPE-V 27
2.7 PolymerizationofThermoplasticPolyurethane(TPU) 29
vi Contents
2.8 GraftingofMaleicAnhydrideonPolyolefines 31
2.9 PartialGlycolysisofPET 32
2.10 PeroxideBreak-DownofPolypropylene 33
2.11 Summary 35
References 35
PartIII SimulationandModeling 37
3 ModelingofTwinScrewReactiveExtrusion:Challengesand
Applications 39
FrançoiseBerzinandBrunoVergnes
3.1 Introduction 39
3.1.1 PresentationoftheReactiveExtrusionProcess 39
3.1.2 ExamplesofIndustrialApplications 40
3.1.3 InterestofReactiveExtrusionProcessModeling 41
3.2 PrinciplesandChallengesoftheModeling 41
3.2.1 TwinScrewFlowModule 42
3.2.2 KineticEquations 44
3.2.3 RheokineticModel 44
3.2.4 Coupling 45
3.2.5 OpenProblemsandRemainingChallenges 45
3.3 ExamplesofModeling 46
3.3.1 EsterificationofEVACopolymer 46
3.3.2 ControlledDegradationofPolypropylene 50
3.3.3 Polymerizationof𝜀-Caprolactone 55
3.3.4 StarchCationization 59
3.3.5 OptimizationandScale-up 61
3.4 Conclusion 65
References 66
4 MeasurementandModelingofLocalResidenceTime
DistributionsinaTwin-ScrewExtruder 71
Xian-MingZhang,Lian-FangFeng,andGuo-HuaHu
4.1 Introduction 71
4.2 MeasurementoftheGlobalandLocalRTD 72
4.2.1 TheoryofRTD 72
4.2.2 In-lineRTDMeasuringSystem 73
4.2.3 ExtruderandScrewConfigurations 75
4.2.4 PerformanceoftheIn-lineRTDMeasuringSystem 76
4.2.5 EffectsofScrewSpeedandFeedRateonRTD 77
4.2.6 AssessmentoftheLocalRTDintheKneadingDiskZone 79
4.3 ResidenceTime,ResidenceRevolution,andResidenceVolume
Distributions 81
4.3.1 PartialRTD,RRD,andRVD 82
4.3.2 LocalRTD,RRD,andRVD 86
Contents vii
4.4 ModelingofLocalResidenceTimeDistributions 88
4.4.1 KinematicModelingofDistributiveMixing 88
4.4.2 NumericalSimulation 89
4.4.3 ExperimentalValidation 92
4.4.4 DistributiveMixingPerformanceandEfficiency 93
4.5 Summary 97
References 98
5 In-processMeasurementsforReactiveExtrusionMonitoring
andControl 101
JoséA.Covas
5.1 Introduction 101
5.2 RequirementsofIn-processMonitoringofReactiveExtrusion 103
5.3 In-processOpticalSpectroscopy 111
5.4 In-processRheometry 116
5.5 Conclusions 125
Acknowledgment 126
References 126
PartIV SynthesisConcepts 133
6 ExchangeReactionMechanismsintheReactiveExtrusionof
CondensationPolymers 135
ConcettoPuglisiandFilippoSamperi
6.1 Introduction 135
6.2 InterchangeReactioninPolyester/PolyesterBlends 138
6.3 InterchangeReactioninPolycarbonate/PolyesterBlends 143
6.4 InterchangeReactioninPolyester/PolyamideBlends 148
6.5 InterchangeReactioninPolycarbonate/PolyamideBlends 155
6.6 InterchangeReactioninPolyamide/PolyamideBlends 159
6.7 Conclusions 166
References 167
7 InsituSynthesisofInorganicand/orOrganicPhasesin
ThermoplasticPolymersbyReactiveExtrusion 179
VéroniqueBounor-Legaré,FrançoiseFenouillot,andPhilippeCassagnau
7.1 Introduction 179
7.2 Nanocomposites 179
7.2.1 SynthesisofinsituNanocomposites 181
7.2.2 SomeSpecificApplications 183
7.2.2.1 AntibacterialPropertiesofPP/TiO Nanocomposites 183
2
7.2.2.2 Flame-RetardantProperties 184
7.2.2.3 ProtonicConductivity 186
7.3 PolymerizationofaThermoplasticMinorPhase:TowardBlend
Nanostructuration 188
viii Contents
7.4 PolymerizationofaThermosetMinorPhaseUnderShear 196
7.4.1 ThermoplasticPolymer/Epoxy-AmineMiscibleBlends 197
7.4.2 ExamplesofStabilizationofThermoplasticPolymer/Epoxy-Amine
Blends 202
7.4.3 BlendsofThermoplasticPolymerwithMonomersCrosslinkingvia
RadicalPolymerization 202
7.5 Conclusion 203
References 204
8 Conceptof(Reactive)Compatibilizer-TracerforEmulsification
CurveBuild-up,CompatibilizerSelection,andProcess
OptimizationofImmisciblePolymerBlends 209
Cai-LiangZhang,Wei-YunJi,Lian-FangFeng,andGuo-HuaHu
8.1 Introduction 209
8.2 EmulsificationCurvesofImmisciblePolymerBlendsinaBatch
Mixer 210
8.3 EmulsificationCurvesofImmisciblePolymerBlendsinaTwin-Screw
ExtruderUsingtheConceptof(Reactive)Compatibilizer 213
8.3.1 Synthesisof(Reactive)Compatibilizer-Tracers 213
8.3.2 DevelopmentofanIn-lineFluorescenceMeasuringDevice 214
8.3.3 ExperimentalProcedureforEmulsificationCurveBuild-up 216
8.3.4 CompatibilizerSelectionUsingtheConceptof
Compatibilizer-Tracer 219
8.3.5 ProcessOptimizationUsingtheConceptof
Compatibilizer-Tracer 220
8.3.5.1 EffectofScrewSpeed 220
8.3.5.2 EffectsoftheTypeofMixer 221
8.3.6 SectionSummary 221
8.4 EmulsificationCurvesofReactiveImmisciblePolymerBlendsina
Twin-ScrewExturder 222
8.4.1 ReactionKineticsbetweenReactiveFunctionalGroups 222
8.4.2 (Non-reactive)CompatibilizersVersusReactiveCompatibilizers 223
8.4.3 AnExampleofReactiveCompatibilizer-Tracer 224
8.4.4 AssessmentoftheMorphologyDevelopmentofReactiveImmiscible
PolymerBlendsUsingtheConceptofReactiveCompatibilizer 225
8.4.5 EmulsificationCurveBuild-upinaTwin-ScrewExtruderUsingthe
ConceptofReactiveCompatibilizer-Tracer 229
8.4.6 AssessmentoftheEffectsofProcessingParametersUsingtheConcept
ofReactiveCompatibilizer-Tracer 233
8.4.6.1 EffectoftheReactiveCompatibilizer-TracerInjectionLocation 233
8.4.6.2 EffectoftheBlendComposition 235
8.4.6.3 EffectoftheGeometryofScrewElements 238
8.5 Conclusion 241
References 241
Contents ix
PartV SelectedExamplesofSynthesis 245
9 Nano-structuringofPolymerBlendsbyinsituPolymerization
andinsituCompatibilizationProcesses 247
Cai-LiangZhang,Lian-FangFeng,andGuo-HuaHu
9.1 Introduction 247
9.2 MorphologyDevelopmentofClassicalImmisciblePolymerBlending
Processes 248
9.2.1 Solid–LiquidTransitionStage 249
9.2.2 MeltFlowStage 251
9.2.3 EffectofCompatibilizer 253
9.3 InsituPolymerizationandinsituCompatibilizationofPolymer
Blends 255
9.3.1 Principles 255
9.3.2 ClassicalPolymerBlendingVersusinsituPolymerization
andinsituCompatibilization 255
9.3.3 ExamplesofNano-structuredPolymerBlendsbyinsitu
PolymerizationandinsituCompatibilization 257
9.3.3.1 PP/PA6Nano-blends 257
9.3.3.2 PPO/PA6Nano-blends 264
9.3.3.3 PA6/Core–ShellBlends 264
9.4 Summary 267
References 268
10 ReactiveCombCompatibilizersforImmisciblePolymer
Blends 271
YongjinLi,WenyongDong,andHengtiWang
10.1 Introduction 271
10.2 SynthesisofReactiveCombPolymers 272
10.3 ReactiveCompatibilizationofImmisciblePolymerBlendsbyReactive
CombPolymers 274
10.3.1 PLLA/PVDFBlendsCompatibilizedbyReactiveComb
Polymers 274
10.3.1.1 ComparisonoftheCompatibilizationEfficiencyofReactiveLinear
andReactiveCombPolymers 274
10.3.1.2 EffectsoftheMolecularStructuresontheCompatibilization
EfficiencyofReactiveCombPolymers 278
10.3.2 PLLA/ABSBlendsCompatibilizedbyReactiveComb
Polymers 282
10.4 ImmisciblePolymerBlendsCompatiblizedbyJanus
Nanomicelles 289
10.5 ConclusionsandFurtherRemarks 293
References 293
x Contents
11 ReactiveCompoundingofHighlyFilledFlameRetardantWire
andCableCompounds 299
MarioNeuenhausandAndreasNiklaus
11.1 Introduction 299
11.2 FormulationsandIngredients 300
11.2.1 TypicalFormulationandVariationsfortheEvaluation 300
11.2.2 PrincipleofSilaneCrosslinkingbyReactiveExtrusion 301
11.2.3 ProductionofAluminumTrihydroxide(ATH) 301
11.2.4 ModeofActionofAluminumTrihydroxide 302
11.2.5 SelectionofSuitableATHGrades 303
11.3 Processing 306
11.3.1 CompoundingLine 306
11.3.2 CompoundingProcessforCrossLinkableHFFR
Products 308
11.3.2.1 Two-StepCompoundingProcess 308
11.3.2.2 One-StepCompoundingProcess 309
11.3.2.3 AdvantagesandDisadvantagesoftheTwoProcessConcepts
(Two-StepvsOne-Step) 313
11.4 EvaluationandResultsontheCompound 314
11.4.1 CrosslinkingDensity 314
11.4.2 MechanicalProperties 315
11.4.3 AgingPerformance 315
11.4.4 FirePerformanceonLaboratoryScale 317
11.4.5 ResultsoftheNon-PolarCompounds 318
11.5 CableTrials 322
11.5.1 FirePerformanceofElectricalCablesAccording
toEN50399 322
11.5.2 BurningTestonExperimentalCablesAccording
toEN50399 323
11.6 Conclusions 328
References 329
12 ThermoplasticVulcanizates(TPVs)bytheDynamic
VulcanizationofMiscibleorHighlyCompatiblePlastic/Rubber
Blends 331
YongjinLiandYanchunTang
12.1 Introduction 331
12.2 MorphologicalDevelopmentofTPVsfromImmisciblePolymer
Blends 333
12.3 TPVsfromMisciblePVDF/ACMBlends 334
12.4 TPVsfromHighlyCompatibleEVA/EVMBlends 338
12.5 ConclusionsandFutureRemarks 342
References 342
Contents xi
PartVI SelectedExamplesofProcessing 345
13 ReactiveExtrusionofPolyamide6withIntegratedMultiple
MeltDegassing 347
ChristianHopmann,EikeKlünker,AndreasCohnen,andMaximilianAdamy
13.1 Introduction 347
13.2 SynthesisofPolyamide6 347
13.2.1 HydrolyticPolymerizationofPolyamide6 347
13.2.2 AnionicPolymerizationofPolyamide6 348
13.3 ReviewofReactiveExtrusionofPolyamide6inTwin-Screw
Extruders 352
13.4 RecentDevelopmentsinReactiveExtrusionofPolyamide6in
Twin-ScrewExtruders 354
13.4.1 ReactionSystemandExperimentalSetup 354
13.4.2 InfluenceofNumberofDegassingStepsandActivatorContenton
ResidualMonomerContentandMolecularWeight 356
13.4.3 InfluenceofAmountandTypeofEntraineronResidualMonomer
ContentandMolecularWeight 365
13.4.4 InfluenceofPolymerThroughputonResidualMonomerContent 367
13.5 Conclusion 368
References 369
14 IndustrialProductionandUseofGraftedPolyolefins 375
InnoRapthel,JochenWilms,andFrederikPiestert
14.1 GraftedPolymers 375
14.2 IndustrialSynthesisofGraftedPolymers 376
14.2.1 MeltGraftingTechnology 377
14.2.2 SolidStateGraftingTechnology 378
14.3 MainApplications 380
14.3.1 UseasCouplingAgents 380
14.3.2 GraftedPolyolefinsforPolymerBlending 392
14.3.2.1 ReactiveBlendingofPolyamides 392
14.3.3 GraftedTPE’sforOvermoldingApplications 400
14.4 ConclusionandOutlook 403
References 404
Index 407