Table Of ContentRaport de Activitate pe anul 2013
Cita˘ri
Institutul de Matematica “Simion Stoilow” al Academiei Romˆane
Contents
1 Cit˘ari ap˘aruteˆın 2012 ¸si necon¸tinuteˆın Raportul pe 2013 1
1.1 Cita˘ri ap˘aruteˆın reviste cotate ISI . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Autocitari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2 Cita˘ri ap˘aruteˆın alte publica¸tii . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.1 Autocitari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.3 Cita˘ri ap˘aruteˆın ca˘r¸ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2 Cit˘ari ap˘aruteˆın 2013 42
2.1 Citari apa˘ruteˆın reviste cotate ISI . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.1 Autocitari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2.2 Citari apa˘ruteˆın alte publica¸tii . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2.2.1 Autocitari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
2.3 Cita˘ri aparuteˆın c˘ar¸ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
1 Cit˘ari ap˘arute ˆın 2012 ¸si necon¸tinute ˆın Raportul pe
2013
1.1 Cit˘ari ap˘arute ˆın reviste cotate ISI
1. Hu, Ze-Chun; Sun, We, Balayage of semi-Dirichlet forms, Canad. J. Math. 64 (2012),
pag. 869–891, IF: 0,556
Citeaza: Beznea, L., Boboc, N, Potential Theory and Right Processes, Springer Series,
Mathematics and Its Applications (572), Kluwer, Dordrecht, 2004.
2. V.Rovenski,P.G.Walczak,Integralformulaeonfoliatedsymmetricspaces,Math. Ann.
362, 1, (2012), 223 – 237
Citeaza: V. Brinzanescu, R. Slobodeanu, Holomorphicity and the Walczak formula on
Sasakian manifolds, J. Geom. Phys. 57, 1, (2006), pag. 193 – 207
3. M. Aprodu, R. Moraru, M. Toma, Two-dimensional moduli spaces of vector bundles over
Kodaira surfaces, Adv. Math. 231, 3-4,(2012),1202 – 1215
Citeaza: V. Brinzanescu, Holomorphic vector bundles over compact complex surfaces,
Lect. Notes in Math., vol 1624 Springer 1996, pag. 180
4. M. Aprodu, R. Moraru, M. Toma, Two-dimensional moduli spaces of vector bundles over
Kodaira surfaces, Adv. Math. 231, 3-4,(2012),1202 – 1215
Citeaza: V. Brinzanescu, R. Moraru, Holomorphic rank-2 vector bundles on non-Kaehler
elliptic surfaces, Ann. Inst. Fourier (Grenoble) 55, 5, (2005), pag. 1659 – 1683
5. M. Aprodu, R. Moraru, M. Toma, Two-dimensional moduli spaces of vector bundles over
Kodaira surfaces, Adv. Math. 231, 3-4,(2012),1202 – 1215
Citeaza: V. Brinzanescu, R. Moraru, Twisted Fourier-Mukai transforms and bundles on
non-Kaehler elliptic surfaces, Math. Res. Lett. 13, 4, (2006), pag. 501 – 514
6. M. Aprodu, R. Moraru, M. Toma, Two-dimensional moduli spaces of vector bundles over
Kodaira surfaces, Adv. Math. 231, 3-4,(2012),1202 – 1215
Citeaza: V. Brinzanescu, R. Moraru, Stable bundles on non-Kaehler elliptic surfaces,
Comm. Math. Phys. 254, 3, (2005), pag. 565 – 580
7. I. Coanda, D. Faenzi, A refined stable restriction theorem for vector bundles on quadric
threefolds, Annali Mat. Pura Appl. November (2012)
Citeaza: V. Brinzanescu, Algebraic 2-vector bundles on ruled surfaces, Ann. Univ.
Ferrara Sez. VII, Sci 37 (1991), pag. 55 – 64
8. Chen Qin, Zhou Wubin, Bochner-type formulas for transversally harmonic maps, Inter-
nat. J. Math. 23, 3, (2012)
Citeaza: V. Brinzanescu, R. Slobodeanu, Holomorphicity and the Walczak formula on
Sasakian manifolds, J. Geom. Phys. 57, 1, (2006), pag. 193 – 207
9. A. Sterian, Stable ample 2-vector bundles on Hirzebruch surfaces, Bull. Math. Soc.
Sci. Math. Roum. 55 (103), 3, (2012), 311 – 317
Citeaza: M. Aprodu, V. Brinzanescu, Existence of stable 2-vector bundles over ruled
surfaces, revista lucrare citata 43, 1-2 (1998), pag. 47 – 56
1
10. A. Sterian, Stable ample 2-vector bundles on Hirzebruch surfaces, Bull. Math. Soc.
Sci. Math. Roum. 55 (103), 3, (2012), 311 – 317
Citeaza: M. Aprodu, V. Brinzanescu, Fibres vectoriels de rang 2 sur les surfaces reglees,
C.R. Acad. Sci. Paris 323, Serie I, (1996), pag. 627 – 630
11. A. Sterian, Stable ample 2-vector bundles on Hirzebruch surfaces, Bull. Math. Soc.
Sci. Math. Roum. 55 (103), 3, (2012), 311 – 317
Citeaza: M. Aprodu, V. Brinzanescu, Moduli spaces of vector bundles over ruled surfaces,
Nagoya Math. J. 154 (1999), pag. 111 – 122
12. A. Sterian, Stable ample 2-vector bundles on Hirzebruch surfaces, Bull. Math. Soc.
Sci. Math. Roum. 55 (103), 3, (2012), 311 – 317
Citeaza: V. Brinzanescu, Algebraic 2-vector bundles on ruled surfaces, Ann. Univ.
Ferrara Sez. VII, Sci 37 (1991), pag. 55 – 64
13. Cuenin, Jean-Claude, Block diagonalization of operators with gaps, with applications
to Dirac operators, Reviews in Mathematical Physics Volume: 24 (2012), Article
Number: 1250021
Citeaza: D.R. Grigore, G. Nenciu, R. Purice, On the non-relativistic limit of the Dirac
hamiltonian, Annales de l’Institut Henri Poincare-Physique Theorique Volume:
51 (1989), pag. 231 – 263.
14. Pedersen, JesperGoor; Brynildsen, MikkelH.; Cornean, HoriaD.; etal., OpticalHallcon-
ductivity in bulk and nanostructured graphene beyond the Dirac approximation, PHYS-
ICAL REVIEW B Volume: 86 (2012), Article Number: 235438.
Citeaza: Cornean, HD ; Nenciu, G ; Pedersen, TG, The Faraday effect revisited: Gen-
eral theory, JOURNAL OF MATHEMATICAL PHYSICS Volume: 47 (2006),
Article Number: 013511.
15. Briet, Philippe; Savoie, Baptiste, A rigorous approach to the magnetic response in disor-
dered systems, REVIEWS IN MATHEMATICAL PHYSICS Volume: 24 (2012),
Article Number: 1250022
Citeaza: Nenciu. G, On asymptotic perturbation theory for quantum mechanics: Almost
invariant subspaces and gauge invariant magnetic perturbation theory, JOURNAL OF
MATHEMATICAL PHYSICS Volume: 43 (2002), pag. 1273 – 1298.
16. Teufel, Stefan; Wachsmuth, Jakob, Spontaneous Decay of Resonant Energy Levels for
MoleculeswithMovingNuclei,COMMUNICATIONSINMATHEMATICALPHYSICS
Volume: 315 (2012), 699 – 738
Citeaza: G. Nenciu, Linear adiabatic theory-exponential estimates, COMMUNICA-
TIONS IN MATHEMATICAL PHYSICS Volume: 152 (1993), pag. 479 – 496.
17. Elgart, Alexander; Hagedorn, George A., A note on the switching adiabatic theorem,
JOURNAL OF MATHEMATICAL PHYSICS Volume: 53 (2012), Article Num-
ber: 102202 Citeaza: G. Nenciu, Adiabatic theorem of quantum mechanics, JOURNAL
OF PHYSICS A-MATHEMATICAL AND GENERAL Volume: 13(1980), pag.
L15-L18.
2
18. Elgart, Alexander; Hagedorn, George A., A note on the switching adiabatic theorem,
JOURNAL OF MATHEMATICAL PHYSICS Volume: 53 (2012), Article Num-
ber: 102202
Citeaza: G. Nenciu, Linear adiabatic theory-exponential estimates, COMMUNICA-
TIONS IN MATHEMATICAL PHYSICS Volume: 152 (1993), pag. 479-496.
19. Mandal, Anirban; Hunt, Katharine L. C., Adiabatic and nonadiabatic contributions to
the energy of a system subject to a time-dependent perturbation: Complete separation
and physical interpretation, JOURNAL OF CHEMICAL PHYSICS Volume: 137
(2012), Article Number: 164109
Citeaza: G.Nenciu,Adiabatictheoremofquantummechanics,JOURNALOFPHYSICS
A-MATHEMATICAL AND GENERAL Volume: 13 (1980), pag. L15-L18.
20. Leclerc, A.; Viennot, D.; Jolicard, G., The role of the geometric phases in adiabatic
population tracking for non-Hermitian Hamiltonians, JOURNAL OF PHYSICS A-
MATHEMATICAL AND THEORETICAL Volume: 45 (2012), Article Number:
415201
Citeaza: G.Nenciu,Adiabatictheoremofquantummechanics,JOURNALOFPHYSICS
A-MATHEMATICAL AND GENERAL Volume: 13 (1980), pag. L15-L18.
21. Ortigoso, Juan, QuantumadiabatictheoreminlightoftheMarzlin-Sandersinconsistency,
PHYSICAL REVIEW A Volume: 86 (2012), Article Number: 032121
Citeaza: G.Nenciu,Adiabatictheoremofquantummechanics,JOURNALOFPHYSICS
A-MATHEMATICAL AND GENERAL Volume: 13 (1980), pag. L15-L18.
22. Briet, Philippe; Fernandez, Claudio, Exponential decay and resonances in a driven sys-
tem, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Volume: 396 (2012)
Citeaza: Jensen, A ; Nenciu, G, The Fermi Golden Rule and its form at thresholds in odd
dimensions, COMMUNICATIONS IN MATHEMATICAL PHYSICS Volume:
261 (2006), pag. 693-727.
23. Marzari, Nicola; Mostfi, Arash A.; Yates, Jonathan R.; et al., Maximally localized Wan-
nier functions: Theory and applications, REVIEWS OF MODERN PHYSICS Vol-
ume: 84 (2012), 1419 – 1475
Citeaza: G. Nenciu, Dynamics of band electrons in electric and magnetic fields: rigor-
ous justfication of the effective hamiltonians, REVIEWS OF MODERN PHYSICS
Volume: 63 (1991), 91-128.
24. Marzari, Nicola; Mostfi, Arash A.; Yates, Jonathan R.; et al., Maximally localized Wan-
nier functions: Theory and applications, REVIEWS OF MODERN PHYSICS Vol-
ume: 84 (2012), 1419-1475
Citeaza: G. Nenciu, Existence of exponentially localized Wannier functions, COMMU-
NICATIONS IN MATHEMATICAL PHYSICS 91, (1983), 81-85.
25. D.Ili´c, V.Pavlovi´c, V.Rako´cevi´c, ExtensionsoftheZamfirescutheoremtopartialmetric
spaces, Math. and Comput. Modell. 55 (2012), 801 – 809
Citeaza: T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. 23 (1972),
pag. 292 – 298
3
26. W. Sintunavarat, P. Kumam, Common fixed point theorem for hybrid generalized multi-
valued contraction mappings, Appl. Math. Letters 25 (2012), 52 – 57
Citeaza: T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. 23 (1972),
pag. 292 – 298
27. V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive
conditions, Fixed Point Theory and Appl. 2012 (2012), 1 – 8
Citeaza: T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. 23 (1972),
pag. 292 – 298
28. W. Sintunavarat, P. Kumam, Common fixed point theorem for cyclic generalized multi-
valued contraction mappings, Appl. Math. Letters 25 (2012), 1849 – 1855
Citeaza: T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. 23 (1972),
pag. 292 – 298
29. I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on
partial metric spaces, Topol. Appl. 159 (2012), 2642 – 2648
Citeaza: T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. 23 (1972),
pag. 292 – 298
30. K. Adiprasito, Infinite curvature on typical convex surfaces, Geom. Dedicata 159
(2012), 267 – 275
Citeaza: T. Zamfirescu, Baire Categories in Convexity, Atti Sem. Mat. Fis. Univ.
Modena, Universita di Modena XXXIX (1991), pag. 139 – 164
31. K. Adiprasito, Infinite curvature on typical convex surfaces, Geom. Dedicata 159
(2012), 267 – 275
Citeaza: T. Zamfirescu, Curvature properties of typical convex surfaces, Pac. J. Math.
131 (1988), pag. 191 – 207
32. K. Adiprasito, Infinite curvature on typical convex surfaces, Geom. Dedicata 159
(2012), 267 – 275
Citeaza: T. Zamfirescu, Nonexistence of curvature in most points, Math. Ann. 252
(1980), pag. 217 – 219
33. K. Adiprasito, Infinite curvature on typical convex surfaces, Geom. Dedicata 159
(2012), 267 – 275
Citeaza: T. Zamfirescu, The curvature of most convex surfaces vanishes almost every-
where, Math. Z. 174 (1980), pag. 135 – 139
34. K. Adiprasito, Infinite curvature on typical convex surfaces, Geom. Dedicata 159
(2012), 267 – 275
Citeaza: T. Zamfirescu, The Majority in Convexity Editura Universit˘a¸tii din Bu-
cure¸sti, 1st Volume (2009)
35. J. Itoh, C. Vˆılcu, Cut locus structures on graphs, Discrete Math. 312 (2012), 524 –
531
Citeaza: T. Zamfirescu, Many endpoints and few interior points of geodesics, Invent.
Math. 69 (1982), pag. 253 – 257
1
4
36. J. Itoh, C. Vˆılcu, Cut locus structures on graphs, Discrete Math. 312 (2012), 524 –
531
Citeaza: T. Zamfirescu, On the cut locus in Alexandrov spaces and applications to convex
surfaces, Pacific J. Math. 217 (2004), pag. 375 – 386
37. J. C. Andrade ¸si J. P. Keating, The mean value of L(1,χ) in the hyperelliptic ensemble,
2
J. Number Theory 132, no. 12 (2012), pag. 2793–2816,
Citeaza: A. Bucur ¸si A. Diaconu, Moments of quadratic Dirichlet L–functions over ratio-
nal function fields, Mosc. Math. J. 10 (2010), pag. 485–517, 661
38. J. B. Conrey, H. Iwaniec ¸si K. Soundararajan, The sixth power moment of Dirichlet L–
functions, Geom. Funct. Anal. 22, no. 5 (2012), pag. 1257–1288,
Citeaza: A. Diaconu, D. Goldfeld ¸si J. Hoffstein, Multiple Dirichlet series and moments
of zeta and L–functions, Compos. Math. 139 (2003), pag. 297–360
39. M. Alderson ¸si M. O. Rubinstein, Conjectures and experiments concerning the moments
of L(1/2,χ ), Exp. Math. 21, no. 3 (2012), pag. 307–328,
d
Citeaza: A. Diaconu, D. Goldfeld ¸si J. Hoffstein, Multiple Dirichlet series and moments
of zeta and L–functions, Compos. Math. 139 (2003), pag. 297–360
40. M. Radziwilli, The 4.36th moment of the Riemann zeta-function, Int. Math. Res.
Not., no. 18 (2012), pag. 4245–4259,
Citeaza: A. Diaconu, D. Goldfeld ¸si J. Hoffstein, Multiple Dirichlet series and moments
of zeta and L–functions, Compos. Math. 139 (2003), pag. 297–360.
41. V. Balan, G. Yu. Bogoslovsky, S.S. Kokarev, D.G. Pavlov, S.V. Siparov, N. Voicu, Geo-
metrical Models of the Locally Anisotropic Space-Time, Journal of Modern Physics,
3 (2012), 1314 – 1335
Citeaza: O. P˘asa˘rescu, Curves on Irrational Scrolls, GAR (2009)
42. V. Balan, G. Yu. Bogoslovsky, S.S. Kokarev, D.G. Pavlov, S.V. Siparov, N. Voicu, Geo-
metrical Models of the Locally Anisotropic Space-Time, Journal of Modern Physics,
3 (2012), 1314 – 1335
Citeaza: O. Pasarescu, Curves on Rational Surfaces with Hyperelliptic Hyperplane Sec-
tions arXiv:1101.0577v1 (2011)
43. Florin Stan and Alexandru Zaharescu, The Siegel norm of algebraic numbers, Bull.
Math. Soc. Sci. Math. Roumanie, Tome 55(103) No.1 (2012), pag. 69–77
Citeaza: V. Pasol, A. Popescu, and N. Popescu, Spectral norms on valued fields,, Math.
Zeit. 238, no 1, (2001), pag. 101 – 114
44. J. S. Athreya, J. Chaika , The Distribution of Gaps for Saddle Connection Directions,
Geometric and Functional Analysis, December 2012, Volume 22, Issue 6, pp 1491-
1516
Citeaza: FP Boca, V Pasol, AA Popa, A Zaharescu, Pair correlation of angles between
reciprocal geodesics on the modular surface, Algebra and Number Theory-to appear
45. H. Ma, Y. Jia, Input-output finite-time mean square stabilisation of stochastic systems
with Markovian jump, International Journal of Systems Science 45 (2012), 325 –
336.
5
Citeaza: Vasile Dragan, Toader Morozan, Adrian-Mihail Stoica, Mathematical methods
in robust control of linear stochastic systems, Springer (2006), pag. 312, carte.
46. Z.Lin, J.Liu, Y. Niu, Dissipative control of non-linear stochastic systems with Poisson
jumps and Markovian switchings, Control Theory and Application IET 6 (2012),
2367 – 2374.
Citeaza: Vasile Dragan, Toader Morozan, Adrian-Mihail Stoica, Mathematical methods
in robust control of linear stochastic systems, Springer (2006), pag. 312, carte.
47. Mehrdad Tabarraie, Robust L -induced deconvolution filtering for linear stochastic sys-
∞
tems and its application to fault reconstruction, Signal processing 93 (2012), 1379 –
1391.
Citeaza: Vasile Dragan, Toader Morozan, Adrian-Mihail Stoica, Mathematical methods
in robust control of linear stochastic systems, Springer (2006), pag. 312, carte.
48. H. Mukaidani, T. Yamamoto, Nash strategy for multiparameter singularly perturbed
Markov jump stochastic systems, IET Control Theory and Applications 6 (2012),
pag. 2337 – 2345.
Citeaza: Vasile Dragan, Toader Morozan, Adrian-Mihail Stoica, Mathematical methods
in robust control of linear stochastic systems, Springer (2006), pag. 312, carte.
49. S.A.KH. Mozaffari Niapour M. Tabarraie M.R. Feyzi, Design and analysis of speed-
sensorless robust stochastic L∞-induced observer for high-performance brushless DC mo-
tor drives with diminished torque ripple, Energy Conversion and Management 64
(2012), pag. 482 – 498
Citeaza: Vasile Dragan, Toader Morozan, Adrian-Mihail Stoica, Mathematical methods
in robust control of linear stochastic systems, Springer (2006), pag. 312, carte.
50. H. Mukaidani, T. Yamamoto, Nash strategy for multiparameter singularly perturbed
Markov jump stochastic systems, IET Control Theory and Applications 6, 14
(2012), pag. 2337 – 2345.
Citeaza: Vasile Dra˘gan, Toader Morozan, The linear quadratic optimization problems for
a class of linear stochastic systems with multiplicative white noise and Markovian jumping,
IEEE Transactions on Automatic Control 49 (2004), pag. 665 – 675
51. J.Liu, J. Zhang, New Upper Matrix Bounds of the solution for perturbed continuous
coupled algebraic Riccati matrix equatiuon, International Journal of control, Au-
tomation and Systems 10 (2012), pag. 1254 – 1259.
Citeaza: VasileDr˘agan, The linear quadratic optimization problem for a class of singularly
perturbed stochastic systems, INTERNATIONAL JOURNAL OF INNOVATIVE
COMPUTING INFORMATION AND CONTROL 1 (2005), pag. 53 – 63
52. J.Zhang, J.Liu, LowersolutionboundsofthecontinuouscoupledalgebraicRiccatimatrix
equation, International Journal of control, Automation and Systems 10 (2013),
pag. 1273 – 1278.
Citeaza: VasileDr˘agan, The linear quadratic optimization problem for a class of singularly
perturbed stochastic systems, INTERNATIONAL JOURNAL OF INNOVATIVE
COMPUTING INFORMATION AND CONTROL 1 (2005), pag. 53 – 63
6
Description:Citeaza: V. Brinzanescu, R. Moraru, Stable bundles on non-Kaehler elliptic . population tracking for non-Hermitian Hamiltonians, JOURNAL OF .. Rares; Suvaina, Ioana, Smooth structures and Einstein metrics on  Citeaza: P. Ionescu, Embedded projective varieties of small invariants, Lecture Notes.