Table Of ContentRadar and Communication
Spectrum Sharing
Relatedtitlesonradar:
AdvancesinBistaticRadarWillisandGriffiths
AirborneEarlyWarningSystemConcepts,3rdEditionLong
BistaticRadar,2ndEditionWillis
DesignofMulti-FrequencyCWRadarsJankiraman
DigitalTechniquesforWidebandReceivers,2ndEditionTsui
ElectronicWarfarePocketGuideAdamy
FoliagePenetrationRadar:DetectionandcharacterisationofobjectsundertreesDavis
FundamentalsofGroundRadarforATCEngineersandTechniciansBouwman
FundamentalsofSystemsEngineeringandDefenseSystemsApplicationsJeffrey
IntroductiontoElectronicWarfareModelingandSimulationAdamy
IntroductiontoElectronicDefenseSystemsNeri
IntroductiontoSensorsforRangingandImagingBrooker
MicrowavePassiveDirectionFindingLipsky
MicrowaveReceiverswithElectronicWarfareApplicationsTsui
Phased-ArrayRadarDesign:ApplicationofradarfundamentalsJeffrey
PocketRadarGuide:Keyfacts,equations,anddataCurry
PrinciplesofModernRadar,Volume1:BasicprinciplesRichards,ScheerandHolm
PrinciplesofModernRadar,Volume2:AdvancedtechniquesMelvinandScheer
PrinciplesofModernRadar,Volume3:ApplicationsScheerandMelvin
PrinciplesofWaveformDiversityandDesignWicksetal.
PulseDopplerRadarAlabaster
RadarCrossSectionMeasurementsKnott
RadarCrossSection,2ndEditionKnottetal.
RadarDesignPrinciples:Signalprocessingandtheenvironment,2ndEditionNathanson
etal.
RadarDetectionDiFrancoandRuby
RadarEssentials:AconcisehandbookforradardesignandperformanceCurry
RadarFoundationsforImagingandAdvancedConceptsSullivan
RadarPrinciplesfortheNon-Specialist,3rdEditionToomayandHannen
TestandEvaluationofAircraftAvionicsandWeaponsSystemsMcShea
UnderstandingRadarSystemsKingsleyandQuegan
UnderstandingSyntheticApertureRadarImagesOliverandQuegan
RadarandElectronicWarfarePrinciplesfortheNon-Specialist,4thEditionHannen
InverseSyntheticApertureRadarImaging:Principles,algorithmsandapplicationsChen
andMarotella
Stimson’sIntroductiontoAirborneRadar,3rdEditionBaker,GriffithsandAdamy
TestandEvaluationofAvionicsandWeaponSystems,2ndEditionMcShea
Angle-of-Arrival Estimation Using Radar Interferometry: Methods and applications
Holder
Biologically-InspiredRadarandSonar:LessonsfromNatureLessonsfromNatureBalleri,
GriffithsandBaker
TheImpactofCognitiononRadarTechnologyFarina,DeMaioandHaykin
NovelRadarTechniquesandApplications,Volume1:Realaperturearrayradar,imaging
radar,andpassiveandmultistaticradarKlemm,Nickel,Gierull,Lombardo,GriffithsandKoch
Novel Radar Techniques and Applications, Volume 2: Waveform diversity and cogni-
tiveradar,andtargettrackinganddatafusionKlemm,Nickel,Gierull,Lombardo,Griffiths
andKoch
Radar and Communication
Spectrum Sharing
Edited by
Shannon D. Blunt and Erik S. Perrins
TheInstitutionofEngineeringandTechnology
PublishedbySciTechPublishing,animprintofTheInstitutionofEngineeringand
Technology,London,UnitedKingdom
TheInstitutionofEngineeringandTechnologyisregisteredasaCharityinEngland&
Wales(no.211014)andScotland(no.SC038698).
©TheInstitutionofEngineeringandTechnology2019
Firstpublished2018
ThispublicationiscopyrightundertheBerneConventionandtheUniversalCopyright
Convention.Allrightsreserved.Apartfromanyfairdealingforthepurposesofresearch
orprivatestudy,orcriticismorreview,aspermittedundertheCopyright,Designsand
PatentsAct1988,thispublicationmaybereproduced,storedortransmitted,inany
formorbyanymeans,onlywiththepriorpermissioninwritingofthepublishers,orin
thecaseofreprographicreproductioninaccordancewiththetermsoflicencesissued
bytheCopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethose
termsshouldbesenttothepublisherattheundermentionedaddress:
TheInstitutionofEngineeringandTechnology
MichaelFaradayHouse
SixHillsWay,Stevenage
Herts,SG12AY,UnitedKingdom
www.theiet.org
Whiletheauthorsandpublisherbelievethattheinformationandguidancegiveninthis
workarecorrect,allpartiesmustrelyupontheirownskillandjudgementwhenmaking
useofthem.Neithertheauthorsnorpublisherassumesanyliabilitytoanyoneforany
lossordamagecausedbyanyerrororomissioninthework,whethersuchanerroror
omissionistheresultofnegligenceoranyothercause.Anyandallsuchliability
isdisclaimed.
Themoralrightsoftheauthorstobeidentifiedasauthorsofthisworkhavebeen
assertedbytheminaccordancewiththeCopyright,DesignsandPatentsAct1988.
BritishLibraryCataloguinginPublicationData
AcataloguerecordforthisproductisavailablefromtheBritishLibrary
ISBN978-1-78561-357-9(hardback)
ISBN978-1-78561-358-6(PDF)
TypesetinIndiabyMPSLimited
PrintedintheUKbyCPIGroup(UK)Ltd,Croydon
Contents
Abouttheeditor xxi
Preface xxiii
PartI Thebigpicture
1 Thecaseforspectrumaccess 3
ShannonD.BluntandErikS.Perrins
1.1 Introduction 3
1.2 Whyspectrumaccessissovital 5
1.3 Toleratingversuscooperating 7
1.3.1 Achievinggreatertolerance 8
1.3.2 Livinginharmony 10
1.4 Scopingthespectrum-sharingproblemspace 12
1.4.1 Spectralperspective 12
1.4.2 Powerperspective 13
1.4.3 Spatialperspective 14
1.4.4 Temporalperspective 15
1.4.5 Dopplerperspective 18
1.4.6 Modulationandcodingperspective 19
1.4.7 Polarizationperspective 21
1.4.8 Separability 22
1.5 Conclusions 23
Acknowledgments 23
References 24
2 Thespectrumcrunch–aradarperspective 27
HughGriffiths
2.1 Introduction 27
2.2 Theradarspectrumenvironment 29
2.3 Signalspectra 31
2.3.1 Spectraofpracticalemissions 31
2.3.2 Radaremissions 31
2.3.3 Radartransmitters 33
2.4 Spectrumallocation 35
2.4.1 Competitionforspectrum 35
2.4.2 Spectrumregulation 35
vi Radarandcommunicationspectrumsharing
2.5 Radarinterferencetootherusers 38
2.5.1 Radarinterferencetootherradars 38
2.5.2 Radarinterferencetoothersystems 39
2.5.3 WiMAXandLTEcommunicationsystems 39
2.6 Interferencetoradarbyotherusers 40
2.7 Technologydevelopments 42
2.7.1 Passivebistaticradar 42
2.7.2 Waveformdiversity 43
2.7.3 Bio-inspiredapproaches 45
2.7.4 Cognitiveradar 45
2.8 Conclusions 46
Acknowledgements 46
References 47
3 Spectrumsharingbetweenradarandsmallcells 51
LuizDaSilva,FranciscoPaisana,andNicolaMarchetti
3.1 Radarsystems—theincumbents 51
3.1.1 Classificationofradarsystems 52
3.1.2 Radarenvironmentalfactors 56
3.2 Currentregulationonradarspectrumsharing 60
3.2.1 5150–5925MHzband 60
3.2.2 3550–3700MHzbandintheUnitedStates 63
3.3 Spatialsharingtechniques 67
3.3.1 Geolocationdatabase(GL-DB) 68
3.3.2 SpectrumsensingandDFS 70
3.3.3 Cooperativespectrumsensing 72
3.3.4 Radioenvironmentmap(REM) 73
3.4 Beyondtraditionalsharingschemes 74
3.4.1 Temporalsharing 74
3.4.2 Cognitivebeamforming 77
3.4.3 Coexistencethroughcooperationandcodesign 82
3.4.4 Openchallenges 83
3.5 Secondaryradioaccesstechnologies 84
3.5.1 LTEinunlicensedspectrum 84
3.5.2 LicensedLTE 86
3.5.3 WLAN 87
3.6 Conclusions 87
3.7 Lookingahead 88
References 89
4 Radarspectrumsharing:history,lessonslearned,andwaysforward 97
FrankSanders
4.1 Introduction 97
4.2 Earlyradardevelopment 98
4.2.1 Thereasonbehindhigherradarfrequencies 99
4.2.2 Radarspectrumbanddevelopment 100
Contents vii
4.2.3 Radarsneedquietspectrumtoworkwell 102
4.2.4 Whyfrequencybandsallocatedtoradarsrequirelarge
bandwidths 103
4.2.5 Whyradarshavetendedtohavetheirownspectrum
allocations 103
4.3 RegulationofradarspectrumintheUnitedStates
andworldwide 104
4.4 Theadventofradarbandsharing 104
4.5 Radar101:essentialknowledgeforspectrumsharing 105
4.5.1 Specificationofwhattheradarmustdo 105
4.5.2 Radar receiver inherent internal thermal noise and other
losses 105
4.5.3 Theradarantenna 106
4.5.4 Radarwavepropagationtoandfromatarget 106
4.5.5 Peakpowertheradarmusttransmit 107
4.5.6 Radarpulserepetitionrate 107
4.5.7 Radarpulseechointegrationforeffectivedetection 108
4.5.8 Radarbeam-scanninginterval 108
4.6 Radarreceiversusceptibilitytointerferenceinspectrum-sharing
scenarios 108
4.7 DetectingourhypotheticalradarforDFSpurposes 109
4.7.1 TheDFSspectrum-sharingconcept 111
4.7.2 UniquenessofDFSforreal-worldspectrumsharing 111
4.7.3 Timelineofinternational(ITU-R)andU.S.national
developmentofDFS 112
4.7.4 DFSintroductoryefforts,1996 112
4.7.5 InitialFCCR&OandMO&Opolicystatements,
1997–1998 112
4.7.6 WRC-03andRecommendationM.1652,Circa2003 113
4.7.7 Determination of protection criteria, late 1990s through
mid-2000s 113
4.7.8 First DFS implementation steps in the United States,
2003–2004 114
4.7.9 DFScertificationtestbeddevelopment,2005–2006 114
4.7.10 DFScertificationrequirementsdeveloped,2005–2006 115
4.7.11 DFS compliance testbed constructed and early testing,
2005–2006 115
4.7.12 InitialDFSdeploymentexperience,2006–2009 116
4.7.13 OngoingDFSdeploymentexperience,2010–present 117
4.8 TechnicalassumptionsofDFS 118
4.8.1 Assumption:radarscanbedetectedwhileU-NIImessage
trafficisoccurring 119
4.8.2 Assumption: detection of radar signals by APs protects
radarsfromallnetworktransmissions 119
4.8.3 Assumption: radar-detection thresholds are adequate to
protectradarsfromharmfulinterference 119
viii Radarandcommunicationspectrumsharing
4.8.4 Assumption:radarwaveformtestingissufficientlyrobust 120
4.8.5 Assumption:firmwareupdatesinstalledinDFSunitsafter
initialcertificationwillnotcauseDFStobeimpairedor
disabled 121
4.8.6 Assumption:DFS-equippedU-NIIswillbe
properlyinstalledandoperated 121
4.8.7 OngoingneedforenforcementinDFSbands 122
4.9 Morelessonslearned 124
4.10 Challengesformanufacturersandvendors 125
4.10.1 Challengestothecommunicationscommunityin
understandingradarsystems 125
4.10.2 Difficultyofdetectinggeneral,notspecific,
radarwaveforms 126
4.10.3 LackofindustrytestbedsforDFS 126
4.10.4 DevelopmentoftheNTIAtestbedanditsusebyindustry
andFCC 127
4.11 ChallengesfordevelopmentofDFStest-and-certification
protocols 128
4.11.1 Advantages:workingfromablankslate 128
4.11.2 Disadvantages:areasofdevelopmentaldoubtand
uncertainty 129
4.12 InterferencecasesafterinitialDFSdeployment 130
4.12.1 IdentificationofinterferingDFS-equippeddevicesatSan
Juan 130
4.13 OngoingDFSspectrumsharingmaintenance 132
4.13.1 ContinuingmonitoringofDFSdevices 132
4.13.2 Considerationofmorecomplexfutureradarwaveforms 132
4.14 Lookingforwardtofuturespectrumsharing 133
References 133
5 Spectrumuse,congestion,issues,andresearchareasat
radio-frequencies 135
EricL.Mokole,TapanK.Sarkar,MiguelAngelLagunas,and
MagdalenaSalazarPalma
5.1 Introduction 135
5.2 ImpactsofEMspectralinteractionsbetweencommunicationand
radarsystems 138
5.2.1 Impactsofradarsoncommunicationsystems 139
5.2.2 Impactsofcommunicationsystemsonradars 141
5.3 Radarspectrum-mitigationefforts 144
5.3.1 Selectedeffortssince1998 144
5.3.2 Currentefforts 146
5.4 Suggestedresearchareasforradar–communications
spectralharmony 147
5.4.1 Adjacent-bandinterferencemitigationforradaremissions 147
Contents ix
5.4.2 Radarwaveforms 151
5.4.3 Innovativeantennaelementsandarrays 152
5.4.4 Innovativeradarreceivers 152
5.4.5 Propagation 154
5.4.6 Adaptiveandcognitiveemissioncontrol 155
5.4.7 Radar–communicationsco-design 156
5.5 SomeessentialEMtheoryforcommunicationsandradar 157
5.5.1 Physicallyrealizablewaveforms 157
5.5.2 Notionsoffarfieldandantennapatternfor
communicationcellsizes 158
5.5.3 Maxwellian-baseduseofcapacity 161
5.5.4 Antennapatternandplacementforcommunications 162
5.5.5 Essentialantennapropertiesforsystemdesign 163
5.6 Closingobservations 164
5.6.1 Radar–communicationsspectralharmony 164
References 167
PartII Systemsengineeringperspectives
6 Spectrallyefficientcommunicationsandradar 177
ErikS.Perrins,ShannonD.Blunt,PatrickM.McCormick,
andBrandonRavenscroft
6.1 Introduction 177
6.2 Communicationspectralefficiency 177
6.2.1 Basiclinearmodulationschemes 178
6.2.2 DetectioninadditivewhiteGaussiannoise 179
6.2.3 Thewaveformmodelforlinearmodulations 179
6.2.4 Orthogonalfrequencydivisionmultiplexing 184
6.2.5 Continuousphasemodulation 185
6.2.6 Channelcapacityandthefundamentallimitsonspectrum
efficiency 189
6.3 Radarspectralefficiency 190
6.3.1 Radarspectralcontent 191
6.3.2 Designingforradarspectralcontainment:holisticsystem
perspective 196
6.3.3 Somepracticalaspectsofsharingradarspectrum 201
6.4 Conclusionsandlookingahead 206
References 207
7 Passivebistaticradarforspectrumsharing 211
HughGriffithsandChrisBaker
7.1 Introduction 211
7.2 Bistaticradarprinciples 213
7.2.1 Bistaticradargeometry 213
7.2.2 Bistaticradarequation 215