Table Of ContentQUANTUM FIELD THEORY OF
NON-EQUILIBRIUM STATES
Thistextintroducesthereal-timeapproachtonon-equilibriumstatisticalmechanics
and the quantum field theory of non-equilibrium states in general. After a lucid
introduction to quantum field theory and Green’s functions, Schwinger’s closed
timepathtechniqueisdeveloped,followedeventuallybythereal-timeformulation
anditsFeynmandiagramtechnique.Theformalismisemployedtoderivequantum
kinetic equations by using the quasi-classical Green’s function technique, and is
applied to study renormalization effects, non-equilibrium superconductivity, and
quantumeffectsindisorderedconductors.
The book offers two ways of learning how to study non-equilibrium states
of many-body systems: the mathematical, canonical way, and an intuitive way
usingFeynmandiagrams.Thelatterprovidesaneasyintroductiontothepowerful
functionalmethodsoffieldtheory.TheusefulnessofFeynmandiagrams,evenina
classicalcontext,isshownbystudiesofclassicalstochasticdynamicssuchasvor-
texdynamicsindisorderedsuperconductors.Thebookdemonstratesthatquantum
fieldsandFeynmandiagramsaretheuniversallanguageforstudyingfluctuations,
betheyofquantumorthermalorigin,orevenpurelystatistical.
Completewithnumerousexercisestoaidself-study,thistextbookissuitablefor
graduatestudentsinstatisticalmechanics,condensedmatterphysics,andquantum
fieldtheoryingeneral.
Jørgen Rammer isaprofessorintheDepartmentofPhysicsatUmea˚ Univer-
sity,Sweden.HehasalsoworkedinDenmark,Germany,Norway,Canadaandthe
USA.Hispastresearchinterestsarepartlyreflectedinthetopicsofthisbook;his
maincurrentinterestsareindecoherenceandchargetransportinnanostructures.
QUANTUM FIELD THEORY OF
NON-EQUILIBRIUM STATES
JØRGEN RAMMER
Umea˚University,Sweden
CAMBRIDGEUNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo
Cambridge University Press
The Edinburgh Building, Cambridge CB28RU, UK
Published in the United States of America by Cambridge University Press, New York
www.cambridge.org
Information on this title: www.cambridge.org/9780521874991
© J. Rammer 2007
This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.
First published in print format 2007
ISBN-13 978-0-511-29656-7 eBook (NetLibrary)
ISBN-10 0-511-29656-8 eBook (NetLibrary)
ISBN-13 978-0-521-87499-1 hardback
ISBN-10 0-521-87499-8 hardback
Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.
Contents
Preface xi
1 Quantum fields 1
1.1 Quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 N-particle system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Identical particles . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Kinematics of fermions. . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Kinematics of bosons. . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 Dynamics and probability current and density . . . . . . . . . 13
1.3 Fermi field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Bose field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.1 Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.2 Quantizing a classical field theory . . . . . . . . . . . . . . . . 26
1.5 Occupation number representation . . . . . . . . . . . . . . . . . . . . 29
1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2 Operators on the multi-particle state space 33
2.1 Physical observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Probability density and number operators . . . . . . . . . . . . . . . . 37
2.3 Probability current density operator . . . . . . . . . . . . . . . . . . . 40
2.4 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.1 Two-particle interaction . . . . . . . . . . . . . . . . . . . . . . 42
2.4.2 Fermion–boson interaction. . . . . . . . . . . . . . . . . . . . . 45
2.4.3 Electron–phononinteraction. . . . . . . . . . . . . . . . . . . . 45
2.5 The statistical operator . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3 Quantum dynamics and Green’s functions 53
3.1 Quantum dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.1 The Schro¨dinger picture . . . . . . . . . . . . . . . . . . . . . . 54
3.1.2 The Heisenberg picture . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Second quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.1 Physical properties and Green’s functions . . . . . . . . . . . . 62
3.3.2 Stable of one-particle Green’s functions . . . . . . . . . . . . . 64
v
vi CONTENTS
3.4 Equilibrium Green’s functions . . . . . . . . . . . . . . . . . . . . . . 70
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4 Non-equilibrium theory 79
4.1 The non-equilibrium problem . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Ground state formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Closed time path formalism . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 Closed time path Green’s function . . . . . . . . . . . . . . . . 87
4.3.2 Non-equilibrium perturbation theory . . . . . . . . . . . . . . . 90
4.3.3 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4 Non-equilibrium diagrammatics . . . . . . . . . . . . . . . . . . . . . . 103
4.4.1 Particles coupled to a classical field. . . . . . . . . . . . . . . . 104
4.4.2 Particles coupled to a stochastic field. . . . . . . . . . . . . . . 106
4.4.3 Interacting fermions and bosons . . . . . . . . . . . . . . . . . 107
4.5 The self-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.5.1 Non-equilibrium Dyson equations . . . . . . . . . . . . . . . . . 116
4.5.2 Skeleton diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5 Real-time formalism 121
5.1 Real-time matrix representation. . . . . . . . . . . . . . . . . . . . . . 121
5.2 Real-time diagrammatics. . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.1 Feynman rules for a scalar potential . . . . . . . . . . . . . . . 123
5.2.2 Feynman rules for interacting bosons and fermions . . . . . . . 125
5.3 Triagonaland symmetric representations . . . . . . . . . . . . . . . . . 127
5.3.1 Fermion–boson coupling . . . . . . . . . . . . . . . . . . . . . . 129
5.3.2 Two-particle interaction . . . . . . . . . . . . . . . . . . . . . . 131
5.4 The real rules: the RAK-rules . . . . . . . . . . . . . . . . . . . . . . . 133
5.5 Non-equilibrium Dyson equations . . . . . . . . . . . . . . . . . . . . . 135
5.6 Equilibrium Dyson equation . . . . . . . . . . . . . . . . . . . . . . . . 138
5.7 Real-time versus imaginary-time formalism . . . . . . . . . . . . . . . 140
5.7.1 Imaginary-time formalism . . . . . . . . . . . . . . . . . . . . . 140
5.7.2 Imaginary-time Green’s functions . . . . . . . . . . . . . . . . . 142
5.7.3 Analytical continuation procedure . . . . . . . . . . . . . . . . 143
5.7.4 Kadanoff–Baymequations . . . . . . . . . . . . . . . . . . . . . 148
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6 Linear response theory 151
6.1 Linear response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.1.1 Density response . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.1.2 Current response . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.1.3 Conductivity tensor . . . . . . . . . . . . . . . . . . . . . . . . 158
6.1.4 Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.2 Linear response of Green’s functions . . . . . . . . . . . . . . . . . . . 159
6.3 Properties of response functions . . . . . . . . . . . . . . . . . . . . . . 164
6.4 Stability of the thermal equilibrium state . . . . . . . . . . . . . . . . 165
CONTENTS vii
6.5 Fluctuation–dissipation theorem . . . . . . . . . . . . . . . . . . . . . 169
6.6 Time-reversalsymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.7 Scattering and correlation functions . . . . . . . . . . . . . . . . . . . 174
6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7 Quantum kinetic equations 179
7.1 Left–right subtracted Dyson equation . . . . . . . . . . . . . . . . . . 179
7.2 Wigner or mixed coordinates . . . . . . . . . . . . . . . . . . . . . . . 181
7.3 Gradient approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.3.1 Spectral weight function . . . . . . . . . . . . . . . . . . . . . . 185
7.3.2 Quasi-particle approximation . . . . . . . . . . . . . . . . . . . 186
7.4 Impurity scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.4.1 Boltzmannian motion in a random potential . . . . . . . . . . . 192
7.4.2 Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.5 Quasi-classicalGreen’s function technique . . . . . . . . . . . . . . . . 198
7.5.1 Electron–phononinteraction. . . . . . . . . . . . . . . . . . . . 200
7.5.2 Renormalization of the a.c. conductivity . . . . . . . . . . . . . 206
7.5.3 Excitation representation . . . . . . . . . . . . . . . . . . . . . 207
7.5.4 Particle conservation . . . . . . . . . . . . . . . . . . . . . . . . 209
7.5.5 Impurity scattering . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.6 Beyond the quasi-classicalapproximation . . . . . . . . . . . . . . . . 211
7.6.1 Thermo-electrics and magneto-transport . . . . . . . . . . . . . 215
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
8 Non-equilibrium superconductivity 217
8.1 BCS-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.1.1 Nambu or particle–hole space . . . . . . . . . . . . . . . . . . . 225
8.1.2 Equations of motion in Nambu–Keldysh space . . . . . . . . . 228
8.1.3 Green’s functions and gauge transformations . . . . . . . . . . 231
8.2 Quasi-classicalGreen’s function theory . . . . . . . . . . . . . . . . . . 232
8.2.1 Normalization condition . . . . . . . . . . . . . . . . . . . . . . 235
8.2.2 Kinetic equation . . . . . . . . . . . . . . . . . . . . . . . . . . 236
8.2.3 Spectral densities . . . . . . . . . . . . . . . . . . . . . . . . . . 236
8.3 Trajectory Green’s functions. . . . . . . . . . . . . . . . . . . . . . . . 238
8.4 Kinetics in a dirty superconductor . . . . . . . . . . . . . . . . . . . . 242
8.4.1 Kinetic equation . . . . . . . . . . . . . . . . . . . . . . . . . . 244
8.4.2 Ginzburg–Landau regime . . . . . . . . . . . . . . . . . . . . . 246
8.5 Charge imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
9 Diagrammatics and generating functionals 253
9.1 Diagrammatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
9.1.1 Propagatorsand vertices. . . . . . . . . . . . . . . . . . . . . . 255
9.1.2 Amplitudes and superposition. . . . . . . . . . . . . . . . . . . 258
9.1.3 Fundamental dynamic relation . . . . . . . . . . . . . . . . . . 261
9.1.4 Low order diagrams . . . . . . . . . . . . . . . . . . . . . . . . 265
viii CONTENTS
9.2 Generating functional . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
9.2.1 Functional differentiation . . . . . . . . . . . . . . . . . . . . . 272
9.2.2 From diagrammatics to differential equations . . . . . . . . . . 274
9.3 Connection to operator formalism. . . . . . . . . . . . . . . . . . . . . 281
9.4 Fermions and Grassmann variables . . . . . . . . . . . . . . . . . . . . 282
9.5 Generator of connected amplitudes . . . . . . . . . . . . . . . . . . . . 284
9.5.1 Source derivative proof. . . . . . . . . . . . . . . . . . . . . . . 284
9.5.2 Combinatorialproof . . . . . . . . . . . . . . . . . . . . . . . . 290
9.5.3 Functional equation for the generator . . . . . . . . . . . . . . 294
9.6 One-particle irreducible vertices . . . . . . . . . . . . . . . . . . . . . . 296
9.6.1 Symmetry broken states . . . . . . . . . . . . . . . . . . . . . . 301
9.6.2 Green’s functions and one-particle irreducible vertices . . . . . 302
9.7 Diagrammatics and action . . . . . . . . . . . . . . . . . . . . . . . . . 306
9.8 Effective action and skeleton diagrams . . . . . . . . . . . . . . . . . . 307
9.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
10 Effective action 313
10.1 Functional integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
10.1.1 Functional Fourier transformation . . . . . . . . . . . . . . . . 314
10.1.2 Gaussian integrals . . . . . . . . . . . . . . . . . . . . . . . . . 315
10.1.3 Fermionic path integrals . . . . . . . . . . . . . . . . . . . . . . 319
10.2 Generators as functional integrals . . . . . . . . . . . . . . . . . . . . 320
10.2.1 Euclid versus Minkowski . . . . . . . . . . . . . . . . . . . . . . 323
10.2.2 Wick’s theorem and functionals . . . . . . . . . . . . . . . . . . 324
10.3 Generators and 1PI vacuum diagrams . . . . . . . . . . . . . . . . . . 330
10.4 1PI loop expansion of the effective action . . . . . . . . . . . . . . . . 333
10.5 Two-particle irreducible effective action . . . . . . . . . . . . . . . . . 339
10.5.1 The 2PI loop expansion of the effective action. . . . . . . . . . 346
10.6 Effective action approach to Bose gases . . . . . . . . . . . . . . . . . 351
10.6.1 Dilute Bose gases . . . . . . . . . . . . . . . . . . . . . . . . . . 351
10.6.2 Effective action formalism for bosons . . . . . . . . . . . . . . . 352
10.6.3 Homogeneous Bose gas. . . . . . . . . . . . . . . . . . . . . . . 356
10.6.4 Renormalization of the interaction . . . . . . . . . . . . . . . . 359
10.6.5 Inhomogeneous Bose gas . . . . . . . . . . . . . . . . . . . . . . 363
10.6.6 Loop expansion for a trapped Bose gas. . . . . . . . . . . . . . 365
10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
11 Disordered conductors 373
11.1 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
11.1.1 Scaling theory of localization . . . . . . . . . . . . . . . . . . . 374
11.1.2 Coherent backscattering . . . . . . . . . . . . . . . . . . . . . . 377
11.2 Weak localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
11.2.1 Quantum correction to conductivity . . . . . . . . . . . . . . . 388
11.2.2 Cooperon equation . . . . . . . . . . . . . . . . . . . . . . . . . 392
11.2.3 Quantum interference and the Cooperon . . . . . . . . . . . . . 398
11.2.4 Quantum interference in a magnetic field . . . . . . . . . . . . 402
CONTENTS ix
11.2.5 Quantum interference in a time-dependent field . . . . . . . . . 404
11.3 Phase breaking in weak localization. . . . . . . . . . . . . . . . . . . . 408
11.3.1 Electron–phononinteraction. . . . . . . . . . . . . . . . . . . . 410
11.3.2 Electron–electroninteraction . . . . . . . . . . . . . . . . . . . 416
11.4 Anomalous magneto-resistance . . . . . . . . . . . . . . . . . . . . . . 423
11.4.1 Magneto-resistance in thin films . . . . . . . . . . . . . . . . . 424
11.5 Coulomb interaction in a disordered conductor . . . . . . . . . . . . . 428
11.6 Mesoscopic fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . 437
11.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
12 Classical statistical dynamics 449
12.1 Field theory of stochastic dynamics . . . . . . . . . . . . . . . . . . . . 450
12.1.1 Langevin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 450
12.1.2 Fluctuating linear oscillator . . . . . . . . . . . . . . . . . . . . 451
12.1.3 Quenched disorder . . . . . . . . . . . . . . . . . . . . . . . . . 454
12.1.4 Dynamical index notation . . . . . . . . . . . . . . . . . . . . . 455
12.1.5 Quenched disorder and diagrammatics . . . . . . . . . . . . . . 457
12.1.6 Over-damped dynamics and the Jacobian . . . . . . . . . . . . 459
12.2Magnetic properties of type-II superconductors . . . . . . . . . . . . . . 460
12.2.1 Abrikosov vortex state . . . . . . . . . . . . . . . . . . . . . . . 460
12.2.2 Vortex lattice dynamics . . . . . . . . . . . . . . . . . . . . . . 462
12.3 Field theory of pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
12.3.1 Effective action . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
12.4 Self-consistent theory of vortex dynamics . . . . . . . . . . . . . . . . 469
12.4.1 Hartree approximation . . . . . . . . . . . . . . . . . . . . . . . 470
12.5 Single vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
12.5.1 Perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . 473
12.5.2 Self-consistent theory . . . . . . . . . . . . . . . . . . . . . . . 474
12.5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
12.5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 476
12.5.5 Hall force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
12.6 Vortex lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
12.6.1 High-velocity limit . . . . . . . . . . . . . . . . . . . . . . . . . 488
12.6.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 489
12.6.3 Hall force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
12.7 Dynamic melting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
12.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
Appendices 501
A Path integrals 503
B Path integrals and symmetries 511
C Retarded and advanced Green’s functions 513
D Analytic properties of Green’s functions 517