ebook img

Python Data Science Essentials PDF

08.847 MB·English
Save to my drive
Quick download
Download

Download Python Data Science Essentials PDF Free - Full Version

About Python Data Science Essentials

NumPy's fast operations and computations -- Matrix operations -- Slicing and indexing with NumPy arrays -- Stacking NumPy arrays -- Summary -- Chapter 3: The Data Pipeline -- Introducing EDA -- Building new features -- Dimensionality reduction -- The covariance matrix -- Principal Component Analysis (PCA) -- PCA for big data - RandomizedPCA -- Latent Factor Analysis (LFA) -- Linear Discriminant Analysis (LDA) -- Latent Semantical Analysis (LSA) -- Independent Component Analysis (ICA) -- Kernel PCA -- T-SNE -- Restricted Boltzmann Machine (RBM) -- The detection and treatment of outliers -- Univariate outlier detection -- EllipticEnvelope -- OneClassSVM -- Validation metrics -- Multilabel classification -- Binary classification -- Regression -- Testing and validating -- Cross-validation -- Using cross-validation iterators -- Sampling and bootstrapping -- Hyperparameter optimization -- Building custom scoring functions -- Reducing the grid search runtime -- Feature selection -- Selection based on feature variance -- Univariate selection -- Recursive elimination -- Stability and L1-based selection -- Wrapping everything in a pipeline -- Combining features together and chaining transformations -- Building custom transformation functions -- Summary -- Chapter 4: Machine Learning -- Preparing tools and datasets -- Linear and logistic regression -- Naive Bayes -- K-Nearest Neighbors -- Nonlinear algorithms -- SVM for classification -- SVM for regression -- Tuning SVM -- Ensemble strategies -- Pasting by random samples -- Bagging with weak classifiers -- Random subspaces and random patches -- Random Forests and Extra-Trees -- Estimating probabilities from an ensemble -- Sequences of models - AdaBoost -- Gradient tree boosting (GTB) -- XGBoost -- Dealing with big data -- Creating some big datasets as examples -- Scalability with volume;Keeping up with velocity -- Dealing with variety -- An overview of Stochastic Gradient Descent (SGD) -- Approaching deep learning -- A peek at Natural Language Processing (NLP) -- Word tokenization -- Stemming -- Word tagging -- Named Entity Recognition (NER) -- Stopwords -- A complete data science example - text classification -- An overview of unsupervised learning -- Summary -- Chapter 5: Social Network Analysis -- Introduction to graph theory -- Graph algorithms -- Graph loading, dumping, and sampling -- Summary -- Chapter 6: Visualization, Insights, and Results -- Introducing the basics of matplotlib -- Curve plotting -- Using panels -- Scatterplots for relationships in data -- Histograms -- Bar graphs -- Image visualization -- Selected graphical examples with pandas -- Boxplots and histograms -- Scatterplots -- Parallel coordinates -- Wrapping up matplotlib's commands -- Introducing Seaborn -- Enhancing your EDA capabilities -- Interactive visualizations with Bokeh -- Advanced data-learning representations -- Learning curves -- Validation curves -- Feature importance for RandomForests -- GBT partial dependence plots -- Creating a prediction server for ML-AAS -- Summary -- Appendix: Strengthen Your Python Foundations -- Your learning list -- Lists -- Dictionaries -- Defining functions -- Classes, objects, and OOP -- Exceptions -- Iterators and generators -- Conditionals -- Comprehensions for lists and dictionaries -- Learn by watching, reading, and doing -- MOOCs -- PyCon and PyData -- Interactive Jupyter -- Don't be shy, take a real challenge -- Index;Cover -- Copyright -- Credits -- About the Authors -- About the Reviewer -- www.PacktPub.com -- Table of Contents -- Preface -- Chapter 1: First Steps -- Introducing data science and Python -- Installing Python -- Python 2 or Python 3? -- Step-by-step installation -- The installation of packages -- Package upgrades -- Scientific distributions -- Anaconda -- Leveraging conda to install packages -- Enthought Canopy -- PythonXY -- WinPython -- Explaining virtual environments -- conda for managing environments -- A glance at the essential packages -- NumPy -- SciPy -- pandas -- Scikit-learn -- Jupyter -- Matplotlib -- Statsmodels -- Beautiful Soup -- NetworkX -- NLTK -- Gensim -- PyPy -- XGBoost -- Theano -- Keras -- Introducing Jupyter -- Fast installation and first test usage -- Jupyter magic commands -- How Jupyter Notebooks can help data scientists -- Alternatives to Jupyter -- Datasets and code used in the book -- Scikit-learn toy datasets -- The MLdata.org public repository -- LIBSVM data examples -- Loading data directly from CSV or text files -- Scikit-learn sample generators -- Summary -- Chapter 2: Data Munging -- The data science process -- Data loading and preprocessing with pandas -- Fast and easy data loading -- Dealing with problematic data -- Dealing with big datasets -- Accessing other data formats -- Data preprocessing -- Data selection -- Working with categorical and text data -- A special type of data - text -- Scraping the Web with Beautiful Soup -- Data processing with NumPy -- NumPy's n-dimensional array -- The basics of NumPy ndarray objects -- Creating NumPy arrays -- From lists to unidimensional arrays -- Controlling the memory size -- Heterogeneous lists -- From lists to multidimensional arrays -- Resizing arrays -- Arrays derived from NumPy functions -- Getting an array directly from a file -- Extracting data from pandas

Detailed Information

0
Author:Boschetti, Alberto;Massaron, Luca
ISBN:1786462834
Language:English
File Size:8.847
Format:PDF
Price:FREE
Download Free PDF

Safe & Secure Download - No registration required

Why Choose PDFdrive for Your Free Python Data Science Essentials Download?

  • 100% Free: No hidden fees or subscriptions required for one book every day.
  • No Registration: Immediate access is available without creating accounts for one book every day.
  • Safe and Secure: Clean downloads without malware or viruses
  • Multiple Formats: PDF, MOBI, Mpub,... optimized for all devices
  • Educational Resource: Supporting knowledge sharing and learning

Frequently Asked Questions

Is it really free to download Python Data Science Essentials PDF?

Yes, on https://PDFdrive.to you can download Python Data Science Essentials by Boschetti, Alberto;Massaron, Luca completely free. We don't require any payment, subscription, or registration to access this PDF file. For 3 books every day.

How can I read Python Data Science Essentials on my mobile device?

After downloading Python Data Science Essentials PDF, you can open it with any PDF reader app on your phone or tablet. We recommend using Adobe Acrobat Reader, Apple Books, or Google Play Books for the best reading experience.

Is this the full version of Python Data Science Essentials?

Yes, this is the complete PDF version of Python Data Science Essentials by Boschetti, Alberto;Massaron, Luca. You will be able to read the entire content as in the printed version without missing any pages.

Is it legal to download Python Data Science Essentials PDF for free?

https://PDFdrive.to provides links to free educational resources available online. We do not store any files on our servers. Please be aware of copyright laws in your country before downloading.

The materials shared are intended for research, educational, and personal use in accordance with fair use principles.