Table Of ContentDipartimento di Ingegneria Astronautica, Elettrica ed Energetica
Dottorato di ricerca in Ingegneria Aerospaziale
Ciclo XXV
PRECISE ANGLE AND RANGE MEASUREMENTS:
ADVANCED SYSTEMS FOR DEEP SPACE MISSIONS
Author Advisor
Francesco Barbaglio Prof. Luciano Iess
Anno Accademico 2011-2012
Aknowledgements
WorkingonthePh.D.hasbeenawonderfulandunforgettableexperience.Manypeople
havehelpedandsupportedmeininnumerableways,duringthe3yearsspenttocarryout
theresearchandcompletethisdissertation.
Firstofall,IamdeeplygratefultomyadvisorProf. LucianoIessforhiscontinuossup-
port. Hiswideknowledgeandhisenthusiasmhavebeenofgreatvalueforme. Moreover
hegavemetheopportunitytobepartofasoexcitingscientificcommunityandtohavean
extraordinarylearningexperience.
I would like tothankAlessandroArditoandGabrieleRapino, who haveworked with
me in the ∆DOR activities and have become true friends. Our collaboration has been a
wonderfulexperienceandtheirconstantsupport,guidanceandgenerosityhavemadethis
workpossible. IwouldlikealsotothankMattiaMercolino,fromESOC,forhissupport,his
valuableadviceandforthefunnymomentsspentinDarmstadt.
Inaddition,IhavebeenprivilegedtogettoknowandtocollaboratewithRadioscience
laboratory colleagues. I wish to express my thanks to them, for their invaluable support
and the fun we had during the working days. A special and warm thank goes to a good
friend, MarcoDucci with whom I shared many experiences, professionalor otherwise, in
these three years. Another particular mention to Mauro di Benedetto, whose friendship
andsupportwasimportant.
IespeciallythankmyMum,mysisterAnnaandmynephewFrancisco. Theirindescrib-
ablelovingsupporttomethroughoutmywholelifeisinvaluable.Iamalsodeeplygrateful
to my Dad. What I have become and what I have achieved is because of him. I am sure
he would be veryproud of me. Mywarm thank goes also to my grandmother and other
familymembers,fortheirinterestandsupport.
Finally,IowemylovingthankstoAlessandra,forherunderstanding,endlesspatience
andencouragement. Ourloveisthebestresulttomeinmylife.
i
Table of Contents
ListofFigures iv
ListofTables vi
Introduction viii
1 Earth-basedradiotrackingsystemsfordeepspacemissions 1
1.1 Radiometricobservables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Errorsources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 ClockInstability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Instrumentaleffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 TransmissionMedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Platformparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
∆
I Delta DifferentialOne WayRanging ( DOR) 12
2 ∆DORsystemoverview 13
2.1 Spacecraftcorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Quasarcorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 ∆DORsystemaccuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 ThermalNoiseeffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Quasarpositioningerror . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Errorbudget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Fragmentedcorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3 ∆DORenhancement:WidebandandLow-SNR 33
3.1 Widebandfunctionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Low-SNRfunctionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4 ∆DORenhancement:Testsandresults 43
4.1 Widebandfunctionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.1 Quasaronly: wideband-likeacquisition . . . . . . . . . . . . . . . . . . 44
4.1.2 VenusEXpress: wideband-likeacquisition . . . . . . . . . . . . . . . . 45
ii
TABLEOFCONTENTS iii
4.1.3 Juno: widebandacquisition . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 LOW-SNRfunctionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 Realdatawithaddednoise . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Simulateddata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
II Pseudonoise rangingsystem 57
5 Rangingsystemsoverview 58
5.1 Sequentialranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.1 NASAtoneranging: signalstructure. . . . . . . . . . . . . . . . . . . . 61
5.1.2 ESAcoderanging: signalstructure . . . . . . . . . . . . . . . . . . . . . 63
5.1.3 Powerallocationinatransparentchannel . . . . . . . . . . . . . . . . . 65
5.1.4 Acquisitionperformance . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Pseudonoise(PN)ranging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.1 PNcodestructureandproperties. . . . . . . . . . . . . . . . . . . . . . 72
5.2.2 PNacquisition,trackingandmeasurementapproaches . . . . . . . . . 74
5.2.3 Powerallocationinaregenerativechannel . . . . . . . . . . . . . . . . 76
5.2.4 Acquisitionperformance . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Rangingsystemaccuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.1 Rangingjitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.2 Errorbudget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6 Pseudonoiseopenloopreceiver 92
6.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1.1 Mathematicalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1.2 SWarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.1 Mathematicalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.2 SWarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7 Pseudonoiseopenloopreceiver:Testsandresults 110
7.1 Nonoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2 Thermalnoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3 Computationaloptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8 Conclusions 121
A ESAmission:BepiColombo 123
B PhaseestimatethroughIandQintegration 126
C ChipTrackingLoopperformance 130
Bibliography 135
List of Figures
2.1 VLBItechniquescheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 ∆DORtrackingscheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 ESA∆DORacquisitionsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 ∆DORacquisitionbandwidths. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 VenusEXpress(2012-214)spectra. . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Topleveldiagramofthestandardspacecraftcorrelationmethod. . . . . . . . 20
2.7 Ambiguityremovalprocess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 QuasarS148spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 Topleveldiagramofthequasarcorrelationprocess. . . . . . . . . . . . . . . . 25
2.10 ∆DORerrorbudget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1 GShardwareconfigurationfor∆DORacquisition. . . . . . . . . . . . . . . . . 33
3.2 ESA∆DORerrorbudgetwithstandardandwidebandconfiguration. . . . . . 37
3.3 Topleveldiagramoflow-SNRspacecraftcorrelationalgorithm. . . . . . . . . 39
4.1 Differentfuntionalitiesfor∆DORcomputation. . . . . . . . . . . . . . . . . . 44
4.2 QUASAR2012-173:Acquisitionconfiguration. . . . . . . . . . . . . . . . . . . 45
4.3 VEX2012-214:Acquisitionconfiguration. . . . . . . . . . . . . . . . . . . . . . 46
4.4 VEX2012-214:Resultsobtainedwithtwodifferentconfigurations,standard-
narrowband(IFMS2)andwideband-like(IFMS3).Differentalgorithmsused. 48
4.5 Juno2012-267:Acquisitionconfiguration. . . . . . . . . . . . . . . . . . . . . . 48
4.6 Low-SNRVEX2012-214:Correlationresults. . . . . . . . . . . . . . . . . . . . 51
4.7 Low-SNRTESTA:Montecarloresults. . . . . . . . . . . . . . . . . . . . . . . . 53
4.8 Low-SNRTESTB:Noiseconfiguration. . . . . . . . . . . . . . . . . . . . . . . 54
4.9 Low-SNRTESTB:Montecarloresults. . . . . . . . . . . . . . . . . . . . . . . . 55
4.10 Low-SNRTESTC:Noiseconfiguration. . . . . . . . . . . . . . . . . . . . . . . 55
5.1 NASA-DSNsequentialrangingspectrum. . . . . . . . . . . . . . . . . . . . . . 62
5.2 ESAcodesequentialrangingspectrum. . . . . . . . . . . . . . . . . . . . . . . 64
5.3 PNRanging-Sequencewaveform.. . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 PNrangingsignalspectrum.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5 Functionalblockdiagramofregenerativerangingchannel. . . . . . . . . . . . 75
iv
LISTOFFIGURES v
5.6 Downlink ranging power gain achievable using regenerative approach in-
steadtransparentchannel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.7 Signal-spacerepresentationforthedecisionbetweenthein-phasecyclicshift
andoneofitsout-of-phasecyclicshiftsofanarbitraryprobingsequence. . . 80
5.8 Rangeerrorbudget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1 Simulatorandcorrelator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Simulatortop-leveldiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Frequenciesonatwo-waycommunications. . . . . . . . . . . . . . . . . . . . . 95
6.4 SimulatorSWdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.5 Datapackagingforcomplexsignal. . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.6 Openlooprangemeasurementprinciple. . . . . . . . . . . . . . . . . . . . . . 100
6.7 Openlooprangemeasurementtopleveldiagram. . . . . . . . . . . . . . . . . 102
6.8 CorrelatorSWdiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.1 NonoiseTEST:Montecarlosimulationsresults. . . . . . . . . . . . . . . . . . . 112
7.2 TH.NOISETEST:Montecarloresults. . . . . . . . . . . . . . . . . . . . . . . . 116
7.3 TH.NOISETEST:Montecarloresults. . . . . . . . . . . . . . . . . . . . . . . . 117
7.4 TIMETEST:Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
C.1 CTLblockdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.2 Mid-phaseintegration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
C.3 CTLlinearizemodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
List of Tables
2.1 Parametersusedfor∆DORerrorbudget. . . . . . . . . . . . . . . . . . . . . . 31
2.2 ∆DORErrorbudget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1 ∆DORErrorbudgetwithstandardandwidebandconfiguration. . . . . . . . 37
4.1 QUASAR2012-173:Correlationresults. . . . . . . . . . . . . . . . . . . . . . . 45
4.2 VEX2012-214:Frequencyplan. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 VEX2012-214:Correlationsettings. . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 VEX2012-214:Correlationresultsinwideband-like(IFMS3)andnarrowband
(IFMS2)configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 VEX2012-214:Correlationresultsinwideband-likeconfiguration(IFMS3).. . 47
4.6 Juno2012-267:Frequencyplan. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 Juno2012-267:Correlationsettings. . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.8 Juno2012-267:Correlationresults. . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.9 Low-SNRVEX2012-214:Correlationsettings.. . . . . . . . . . . . . . . . . . . 50
4.10 Low-SNRVEX2012-214:Correlationresults. . . . . . . . . . . . . . . . . . . . 50
4.11 LOW-SNRTESTA:Frequencyplan. . . . . . . . . . . . . . . . . . . . . . . . . 51
4.12 Low-SNRTESTA:Montecarloresults . . . . . . . . . . . . . . . . . . . . . . . 52
4.13 Low-SNRTESTB:Frequencyplan. . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.14 Low-SNRTESTB:Montecarloresults . . . . . . . . . . . . . . . . . . . . . . . 55
4.15 Low-SNRTESTC:Frequencyplan. . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.16 Low-SNRTESTC:Montecarloresults . . . . . . . . . . . . . . . . . . . . . . . 56
5.1 TonesfrequenciesusedinNASA-DSNsequentialranging. . . . . . . . . . . . 61
5.2 Definitionforthemodulationscheme. . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 T2B/T4BPNcodes: DCproperties. . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 T2B/T4BPNcodes: Correlationproperties. . . . . . . . . . . . . . . . . . . . . 73
5.5 T2B/T4BPNcodes: Rangeclockattenuation. . . . . . . . . . . . . . . . . . . . 74
5.6 Definitionforthemodulationscheme. . . . . . . . . . . . . . . . . . . . . . . . 77
5.7 T2B/T4BPNcodes: Acquisitionproperties. . . . . . . . . . . . . . . . . . . . . 82
5.8 T2B/T4BPNcodes: Acquisitiontime. . . . . . . . . . . . . . . . . . . . . . . . 84
5.9 Rangeerrorbudget: Systemconfigurations. . . . . . . . . . . . . . . . . . . . . 88
5.10 Rangeerrorbudget: Radiolinkconfigurationandlinkbudget. . . . . . . . . . 89
vi
LISTOFTABLES vii
5.11 Rangeerrorbudget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.1 Simulationparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Correlationparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.1 NonoiseTEST:Generalparameterssetup.. . . . . . . . . . . . . . . . . . . . . 111
7.2 NonoiseTEST:Residualdynamicsetup.. . . . . . . . . . . . . . . . . . . . . . 111
7.3 NonoiseTEST:Montecarloresults. . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4 TH.NOISETEST:Generalparameterssetup. . . . . . . . . . . . . . . . . . . . 113
7.5 TH.NOISETEST:Residualdynamicsetup. . . . . . . . . . . . . . . . . . . . . 113
7.6 TH.NOISETEST:Noisesetup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.7 TH.NOISETEST:Montecarloresults. DynamiccaseA. . . . . . . . . . . . . . 115
7.8 TH.NOISETEST:Montecarloresults. DynamiccaseB. . . . . . . . . . . . . . 115
7.9 TH.NOISETEST:Montecarloresults. DynamiccaseC. . . . . . . . . . . . . . 115
7.10 TIMETEST:Generalparameterssetup. . . . . . . . . . . . . . . . . . . . . . . 118
7.11 TIMETEST:Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.1 BepiColomboscientificinstruments. . . . . . . . . . . . . . . . . . . . . . . . . 124
Introduction
Thenavigationofspacevehiclesisperformedbymeansofradiowavescommunication
withEarthgroundstations. Suchradiolinkpermitstosendcommands,receivetelemetry
andtotrackthespaceprobes. Theradiometricobservables,providedbytheradiotracking
system, are used to reconstruct, in a process called orbit determination, the space probe
position and orbit, whose knowledge is fundamentalfor navigation aswell asfor science
purposes. Infact,radioscienceandplanetarygeodesyexperimentsneedanaccurateorbit
reconstruction;thereforethequalityofradiometricdatadeterminesultimatelynotonlythe
navigationaccuracybutalsothesciencereturn. Forthisreasonthetrackingradiosystems
aresubjecttocontinuousdevelopmentsandimprovements.Newandadvancedtechniques
are implemented to reduce the contribution from the many errors sources and therefore
toprovidehighlyaccurateobservablesdemandedbymorechallengingnavigationperfor-
mance.
The work here presented regardsthe radio tracking systems used, in deep space mis-
sions,toprovideangularandrangemeasurements.Inparticular,afterachapteraboutradio
trackingsystems(ch.1)ingeneral,theworkconsistsintwodistinctiveparts,involvingthe
enhancements of the European Space Agency (ESA)∆DOR system and the development
ofanopenloopsoftwarecorrelatorforrangingsystembasedonpseudonoise(PN)codes.
DeltadifferentialOne-wayRanging(∆DOR),providingadirectmeasurementofthean-
gularpositionofaspacecraft,isapowerfultechniqueusedfornavigationofinterplanetary
probes.Itsprinciple,simplebuteffective,consistsinmeasuringthedifferenceinthearrival
time of a spacecraftsignal at two ground stations, and calibrating it with an ICRF (Inter-
national Celestial Reference Frame) quasar signal. In 2005, Sapienza University of Rome
undertookthedevelopmentofa∆DORcorrelatorforEuropeanSpaceAgency(ESA).Since
thefirstdevelopment,andforthelastsevenyears,thatsystemhasbeenusedsuccessfully
to navigate the Venus Express and the Rosetta ESA probes. After first enhancements, in
2008 ESA provided support also to NASA (National Aeronautics and Space Administra-
tion)missionPhoenixandthentoJAXA(JapaneseAerospaceExplorationAgency)mission
Hayabusa.In2011,furtherenhancementsofthecorrelatorhavebeenundertaken. Thetwo
enhancements presented in this work regard the increase of the ∆DOR system accuracy,
extendingthebandwidthcurrentlylimitedbythegroundstationshardware,andtheoper-
abilitywithsignalsatvery-lowsignaltonoiseratio(SNR).Thefirstpartoftheworkstarts
with chapter 2, treating the ∆DOR system and in particular the ESA one. The new algo-
viii
ix
rithmsandmethodsdesignedandimplementedtobecompliantwiththeESArequestsare
explainedinthefollowingchapter3whilethecampaignofteststhathasbeencarriedout
tovalidateoperativelythe newalgorithms andfunctionalities, and toinvestigate the per-
formanceofthe∆DORcorrelator,isreportedinchapter4.
Therangingsystemsarebasedonthesimpleprincipleofmeasuringthetimeofflightof
anelectromagneticwaveinvacuum. Inparticular,thesesystemsconsist,inthemostcom-
mon configuration, in a known ranging signal modulated onto an uplink, retransmitted
bythespacecraftandthendetectedonthedownlink. Theround-triplighttime,measured
correlating the received ranging signal with a replica of what was transmitted, yields a
measurement of the range. The current ranging system uses as ranging signal a series of
tones, or components with different frequencies, transmitted sequentially. The need for
greater ranging accuracies required by the new generations of interplanetary space mis-
sion, like ESA BepiColombo mission, or the need to travelto more distant planets results
in a development of new kind of ranging systems based on PN codes. The ranging sig-
nalconsistsinacode, comingfromalogicalcombinationofseveralsequences, whichhas
particular cross correlation properties. This new system permits to adopt a regenerative
approach at the spacecraft. The ranging signal, instead of being only de-modulated and
re-modulated (transparentapproach) as for sequential ranging, is regenerated, before be-
ingretransmittedtowardsEarth. Removing substantially the uplinknoise onthe ranging
signal, this approach results in an increase of the signal-to-noise ratio at the ground sta-
tionofupto30dBandthereforeinabettermeasurementsprecisionachievable. Currently
ESAstationsdon’thavereceiverscapabletooperatewithPNrangingsignal,whileNASA
Deep Space Network (DSN) has only a limited capability. Given the cost and complexity
ofclosed-loopreceiver,asoftwarecorrelatorintrinsiccheapnessandflexibilitymakeitsde-
velopmentmeaningful. Thesecondpartofthisworkregardsthereforethedesignandthe
developmentofasoftwarecorrelator,aspartofanopenloopreceiver,abletoproviderange
measurementsbymeans of anoffline processingof the signalacquiredatthe ground sta-
tion. Afterafirstgeneralchapter(ch.5)onrangingsystem,thechapter6showsthesoftware
architectureofthecorrelatorandthatofthesimulatoroftheradiolinkthathasbeendevel-
oped.Then,acampaignoftestscarriedouttoinvestigatethebehaviorandtheperformance
ofthecorrelatorisreportedinthe7thchapter.
Description:Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica. Dottorato di ricerca in Ingegneria Aerospaziale. Ciclo XXV. PRECISE Secular increases in LOD of about 1ms per century due to tidal dissipation of lunar forces.