Table Of ContentPower spectral density accuracy in
Chirp Transform Spectrometers
Dissertation
zur Erlangung des Doktorgrades
der Fakultät für Angewandte Wissenschaften
der Albert-Ludwigs-Universität Freiburg im Breisgau
vorgelegt von
Lucas Paganini
aus Mendoza / Argentinien
Freiburg 2008
Bibliografische Information Der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detailliertebibliografischeDatensindimInternetüber
http://dnb.ddb.de abrufbar.
D7
Referent: Prof. Dr. Leonhard Reindl
Korreferent: Prof. Dr. Oskar von der Lühe
Tag der mündlichen Prüfung: 27. März 2008
ISBN 978-3-936586-83-1
Copernicus Publications 2008
http://publications.copernicus.org
c Lucas Paganini
(cid:13)
Printed in Germany
To my family
Contents
Abstract ix
Zusammenfassung xi
ListofFigures xv
ListofTables xvii
ListofSymbols xix
1 Introduction 1
1.1 ThesisOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Microwaveheterodynespectroscopy . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1.1 Blackbodyradiation andthebrightnesstemperature . . 4
1.2.1.2 The relationship of thermal blackbody radiation and
antennatemperature . . . . . . . . . . . . . . . . . . . 5
1.2.2 Heterodynereceivers . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Theradiometerformula . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 Scientificapplications . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Aimsofthisthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 The400-MHzbandwidthCTS 13
2.1 Introduction toCTSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 TheChirptransform principle . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Developmentanddesign . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Thedispersivefilters . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Digital chirpgeneration, theDDSboard . . . . . . . . . . . . . . 23
2.3.2.1 Thedirectdigitalsynthesizers . . . . . . . . . . . . . . 23
2.3.3 Timesynchronization . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.4 Operatingmultiple AD9858sinstances . . . . . . . . . . . . . . 26
2.3.5 Recommendation onparallelAD9858sarchitecture . . . . . . . . 27
2.3.5.1 BypassingtheREFCLKdivide-by-2 . . . . . . . . . . 27
2.3.5.2 SynchronizingSYNCLKamongallDDSs . . . . . . . 27
2.3.5.3 MeetingsetupandholdtimesbetweenFUDandSYN-
CLK . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
v
Contents
2.3.6 TheDDSandASICboardssynchronization . . . . . . . . . . . . 28
2.4 Characterization. Testmeasurements . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Analysisofthechirpsignal . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Frequencyandtimedomainanalyses . . . . . . . . . . . . . . . 30
2.4.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.4 Spectralresolution . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.5 Powerlinearity anddynamicrange . . . . . . . . . . . . . . . . . 37
2.5 Observationsandresults . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.1 Ozonemeasurements . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.2 Astronomical observations at the Heinrich Hertz Submillimeter
Telescope(HHSMT) . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.2.1 Comets . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.2.2 Marsandothersources . . . . . . . . . . . . . . . . . 47
2.6 Analysisandperformance . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3 Impactsofnonlinearityinheterodynesystems 55
3.1 Ground-basedmicrowavespectroscopyoftheEarth’satmosphere . . . . 55
3.1.1 Theatmosphereasphysicalsystem . . . . . . . . . . . . . . . . 55
3.1.2 Physicalproperties. Composition andstructure . . . . . . . . . . 56
3.1.3 Absorption andemissionbygases . . . . . . . . . . . . . . . . . 58
3.1.4 Theshapeofaspectralline . . . . . . . . . . . . . . . . . . . . . 58
3.1.5 Theoryofradiativetransfer . . . . . . . . . . . . . . . . . . . . . 59
3.1.6 Inversion technique . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 Numericalanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 SimulationsontheEarth’satmosphere . . . . . . . . . . . . . . . . . . . 66
3.4 Othersourcesofinstrumental error . . . . . . . . . . . . . . . . . . . . . 67
3.4.1 Skywindow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.2 Referenceloads . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.3 Singlesidebandfilter . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4 Onthehighaccuracyofmeasuredspectra 77
4.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Intercomparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Linearitymeasurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.1 A3-dimensional analysismethod . . . . . . . . . . . . . . . . . 81
4.3.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1.2 Improvements providedbythismethod . . . . . . . . . 84
4.3.2 Anovelhigh-accuracymethod . . . . . . . . . . . . . . . . . . . 87
4.3.2.1 Gainfluctuations . . . . . . . . . . . . . . . . . . . . . 90
4.3.2.2 Measurementresults . . . . . . . . . . . . . . . . . . . 92
4.3.2.3 MethodologyappliedtoCTSs . . . . . . . . . . . . . . 92
4.3.2.4 Improvements . . . . . . . . . . . . . . . . . . . . . . 96
4.4 Theimportance forfuturedevelopments . . . . . . . . . . . . . . . . . . 99
vi
Contents
5 Concludingremarks 101
A Receivercalibration 103
A.1 Determination oftheantennatemperature,T . . . . . . . . . . . . . . . 103
A
A.2 Determination ofthereceivertemperature,T . . . . . . . . . . . . . . . 103
R
B Circuitdiagrams 105
C Observationsanddatareduction 109
C.1 Calibrationandtelescopeefficiency . . . . . . . . . . . . . . . . . . . . 109
D Detailsofdevicesundertest 113
Bibliography 115
Publications 125
Acknowledgements 127
Lebenslauf 129
vii
Abstract
Heterodyne spectroscopy is a technique providing practically unlimited spectral resolu-
tion. Eventhesmallestfeaturesofatmosphericspectrallinescanberesolvedinfrequency
using this technique. This is especially important, for instance, in the study of planetary
atmospheres where the structure of molecular transition lines provides detailed informa-
tionaboutmoleculardistribution,temperatureandpressureprofilesalongthelineofsight.
This thesis aims to address the specific properties required to maximize the reliability in
heterodyne-systemresponsesfocusingmainlyontheeffectsofnonlinearbehaviorinchirp
transform spectrometers.
In this investigation, a comprehensive description and characterization of a new 400-
MHz bandwidth Chirp Transform Spectrometer (CTS) with 100 kHz spectral resolution
are presented. In order to achieve the 400-MHz bandwidth, a newly developed DDS
board,drivenbya1-GHzfixedfrequencyclocksource,createsachirpsignalusingdigital
techniques. Novel methods have been applied to the RF section in the CTS, since the in-
trinsicpropertiesoftheSAWfilter(withabandwidthequalto400MHz)requiresaninput
signal two times larger than the SAW filter’s bandwidth. Furthermore, this spectrometer
has been applied to atmospheric science, i.e. a 142-GHz ozone system by detecting the
142.175-GHz rotational transition of ozone in the Earth’s atmosphere. In addition, the
CTS system was used for astronomical observations at the Heinrich Hertz Submillime-
terTelescopeduringtheobservationrunofthe73P/Schwassmann-Wachmann3cometin
May2006,duringthecomet’sclosestapproachtotheEarth.
Any deviation from the spectrometer’s (ideal) linear dynamic range may induce sig-
nificant effects in the spectra, therefore, it is essential to model these deviations such that
theyareaccountedfor. Theseanalysesareperformedbymeansofnumericalcalculations
and simulations which show how these deviations in the spectra might produce consider-
ablechangesintheretrievedverticalprofileoftracegasesinplanetaryatmospheres.
In several examples, deviations are evidenced in the measured spectra of heterodyne
systems. Thus, two novel experiments were conducted in order to analyze the behavior
ofnonlinearityinbackendspectrometers. Basedonadifferentialapproach,bothanalyses
provideaneffectivesolutionintheidentificationofnonlinearprocesses.
Finally, experimental results in the ozone-radiometer test facility at the Max Planck
Institute for Solar System Research (MPS) show the improvements in the 400-MHz-BW
CTSresponse. Itisconfirmedthattheoveralldeviationsintroducedbynonlinearityinthe
spectrometer have been decreased and thus the performance of the backend instrument
hasbeenimproved.
ix
Description:2.14 Chirp-signal analysis tools: simulated perfect chirp signal. Acronyms IDL: Input Drive Level, CL: Conversion Loss, P1dB: Output Power at 1.