Table Of ContentCHAPTER 1
Organic Pollutants in Aqueous-Solid Phase
Environments: Types, Analyses and Characterizations
Tarek A.T.Aboul-Kassim1,Bernd R.T.Simoneit2
1 Department ofCivil,Construction and Environmental Engineering,
College ofEngineering,Oregon State University,202 Apperson Hall,Corvallis,
OR 97331,USA
e-mail:[email protected]
2 Environmental and Petroleum Geochemistry Group,College ofOceanic
and Atmospheric Sciences,Oregon State University,Corvallis,OR 97331,USA
e-mail:[email protected]
In order to study the chemodynamic behavior (i.e.,fate and transport) oforganic pollutants
in the environment and their interactions with various solid phase systems,our goals in this
chapter are to address these aspects.The first is to present a review ofthe most toxic organic
pollutant types which are present in both aqueous and solid phase environments.These pol-
lutants include petroleum hydrocarbons, pesticides, phthalates, phenols, PCBs, organotin
compounds, and surfactants as well as complex organic mixtures (COMs) of pollutants
leached from solid waste materials (SWMs) in landfills and disposal sites.The term solid
phasesystem is used here to indicate soil-particulate matter,sediment,suspended,and bio-
logical materials.The second goal is to provide a comprehensive review ofthe different ana-
lytical techniques used for the determination ofthese organic compounds.The third objec-
tive is to discuss and evaluate the current instrumental developments and advances for the
identification and characterization ofthese organic compounds.This chapter serves as the
backbone for the subsequent chapters in the present volume,and aids in understanding the
various interaction mechanisms between organic pollutants and diverse solid phase sur-
faces,their chemistry,and applicable modeling techniques.
Keywords.Organic pollutants,Hydrocarbons,Pesticides,Phthalates,Phenols,PCBs,Surfac-
tants,Instrumentation,Identification,Characterization,Aqueous-solid phase systems
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Types ofOrganic Pollutants . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Petroleum Hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Aliphatic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Polycytic Aromatic Compounds . . . . . . . . . . . . . . . . . . . . 13
2.2 Pesticides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Pesticide Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1.1 Cationic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1.2 Basic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1.3 Acidic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1.4 Nonionic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Priority Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 PCBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Phthalates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Phenols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6 Organotin Compounds . . . . . . . . . . . . . . . . . . . . . . . . . 42
The Handbook ofEnvironmental Chemistry Vol.5 Part E
Pollutant-Solid Phase Interactions:Mechanism,Chemistry and Modeling
(by T.A.T.Aboul-Kassim,B.R.T.Simoneit)
© Springer-Verlag Berlin Heidelberg 2001
2 T.A.T.Aboul-Kassim and B.R.T.Simoneit
2.7 Surfactants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7.1 Anionic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7.2 Cationic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7.3 Nonionic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7.4 Amphoteric (Zwitterionic) . . . . . . . . . . . . . . . . . . . . . . . 51
3 Analysis ofEnvironmental Organic Pollutants . . . . . . . . . . . 52
3.1 Recovery Measurements . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Pre-Extraction and Preservation Treatments . . . . . . . . . . . . . 54
3.3 Extraction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Supercritical Fluid Extraction . . . . . . . . . . . . . . . . . . . . . 55
3.3.2 Soxhlet Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.3 Blending and Ultrasonic Extraction . . . . . . . . . . . . . . . . . 56
3.3.4 Liquid-Liquid Extraction . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.4.1 Concentration Procedures . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.4.2 Advantages and Drawbacks . . . . . . . . . . . . . . . . . . . . . . 58
3.3.5 Solid-Phase Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.5.1 Off-Line Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.5.2 On-Line Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.6 Column Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.7 Comparative Extraction Studies . . . . . . . . . . . . . . . . . . . . 61
3.3.8 Micro-Extraction Methods . . . . . . . . . . . . . . . . . . . . . . 63
3.4 Clean-Up Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.1 Measurement ofExtractable Lipids/Bitumen . . . . . . . . . . . . 64
3.4.2 Removal ofLipids/Bitumen . . . . . . . . . . . . . . . . . . . . . . 64
3.4.2.1 Saponification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.2.2 Sulfuric Acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.2.3 Solid Phase Clean-Up . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.2.4 Gel Permeation Chromatography . . . . . . . . . . . . . . . . . . . 66
3.4.2.5 Supercritical Fluid Clean-Up . . . . . . . . . . . . . . . . . . . . . 67
3.4.2.6 Sulfur Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5.1 Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5.2 On-Line Automation . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6 Multi-Residue Schemes . . . . . . . . . . . . . . . . . . . . . . . . 70
4 Identification and Characterization ofOrganic Pollutants . . . . . 71
4.1 Gas Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Gas Chromatography-Mass Spectrometry . . . . . . . . . . . . . . 72
4.2.1 Mass Spectrometry Ionization Methods . . . . . . . . . . . . . . . 73
4.2.1.1 Electron Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1.2 Chemical Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1.3 Electrospray Ionization . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1.4 Fast-Atom Bombardment . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.1.5 Plasma and Glow Discharge . . . . . . . . . . . . . . . . . . . . . . 74
4.2.1.6 Field Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
1 Organic Pollutants in Aqueous-Solid Phase Environments:Types,Analyses and Characterization 3
4.2.1.7 Laser Ionization Mass Spectrometry . . . . . . . . . . . . . . . . . 74
4.2.1.8 Matrix-Assisted Laser Desorption Ionization . . . . . . . . . . . . 74
4.2.2 Types ofMass Spectrometers . . . . . . . . . . . . . . . . . . . . . 75
4.2.2.1 Quadrupole Mass Spectrometry . . . . . . . . . . . . . . . . . . . . 75
4.2.2.2 Magnetic-Sector Mass Spectrometry . . . . . . . . . . . . . . . . . 75
4.2.2.3 Ion-Trap Mass Spectrometry . . . . . . . . . . . . . . . . . . . . . 75
4.2.2.4 Time-of-Flight Mass Spectrometry . . . . . . . . . . . . . . . . . . 76
4.2.2.5 Fourier-Transform Mass Spectrometry . . . . . . . . . . . . . . . . 76
4.2.3 Fragmentation Pattern and Environmental Applications . . . . . . 76
4.3 Liquid Chromatography-MS . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Isotope Ratio Mass Spectrometry . . . . . . . . . . . . . . . . . . . 79
4.4.1 Environmental Reviews . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.3 Sample Preparation and Handling . . . . . . . . . . . . . . . . . . 80
4.4.4 On-Line Coupling ofIRMS . . . . . . . . . . . . . . . . . . . . . . 81
4.4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.5.1 Carbon Isotope Analysis . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.5.2 Nitrogen Isotope Analysis . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.5.3 Hydrogen Isotope Analysis . . . . . . . . . . . . . . . . . . . . . . 83
4.4.5.4 Oxygen Isotope Analysis . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.5.5 Chlorine Isotope Analysis . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.6 Modern Application Examples . . . . . . . . . . . . . . . . . . . . 85
4.5 Future Developments in Organic Pollutant Identification
and Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
List of Abbreviations
BSTFA Bis(trimethylsilyl)trifluoroacetamide
CI Chemical ionization
COMs Complex organic mixtures
CSIA Compound specific isotope analysis
DEHP Diethyl phthalate
DOP Dioctyl phthalate
ECD Electron capture detector
EI Electron impact
EPA Environmental Protection Agency
ESI Electrospray ionization
FAB Fast-atom bombardment
FI Field ionization
GC Gas chromatography
GC-AED Gas chromatography with atomic emission detection
4 T.A.T.Aboul-Kassim and B.R.T.Simoneit
GC-FPD Gas chromatograph with flame photometric detection
GC-MS Gas chromatography-mass spectrometry
GPC Gel permeation chromatography
HCs Hydrocarbons
HPLC High performance liquid chromatography
HTGC-MS High temperature gas chromatography-mass spectrometry
IDMS Isotope dilution mass spectrometry
IRMS Isotope ratio mass spectrometry
ITD Ion trap detector
LC Liquid chromatography
LIMS Laser ionization mass spectrometry
LLE Liquid-liquid extraction
MALDI Matrix-assisted laser desorption ionization
MS Mass spectrometry
OCPs Organochlorine pesticides
PAEs Phthalic acid esters
PAHs Polycyclic aromatic hydrocarbons
PCBs Polychlorinated biphenyls
PD Plasma desorption
PGD Plasma and glow discharge
RIMS Resonance ionization mass spectrometry
SFC Supercritical fluid chromatography
SFE Supercritical fluid extraction
SIMS Secondary ionization mass spectrometry
SPE Solid phase extraction
SPME Solid phase microextraction
SSJ/LIF Supersonic jet laser-induced fluorescence
SWMs Solid waste materials
TOC Total organic carbon
TOF-MS Time offlight-mass spectrometry
TPs Transformation products
1
Introduction
The twenty-first century can properly be called the age oforganic chemistry due
to the huge worldwide increase in organic chemical production (more than
70,000 compounds) and utilization.Many ofthese organic compounds have pro-
ven to be toxic,carcinogenic,and mutagenic to various aquatic organisms and,
directly and/or indirectly, to humans [1]. The dramatic increase in the
production oforganic chemicals has completely altered our immediate human
environment and provided a wealth of new compounds which,in many cases,
were more toxic and carcinogenic than the parent compounds.
With environmental protection high on the agenda of many industrial
countries,new rules and regulations are currently being set up for monitoring
1 Organic Pollutants in Aqueous-Solid Phase Environments:Types,Analyses and Characterization 5
greater numbers ofhazardous organic pollutants.Organic pollutants present in
the various environmental multimedia may occur naturally [2] and/or derive
from anthropogenic sources [3–13]. Anthropogenic input may derive from
industrial sources [14–20],urban wastes [21–35],agricultural activity [36–44],
and from degradation products [45–52]. Organic pollutants have different
polarities and chemical properties;hence,low detection limits are necessary for
studying the fate and transport ofthese organic compounds in and/or within the
different environmental multimedia,as well as their interactive behavior with
other solid phase surfaces.
Accordingly,environmental organic analysis has expanded dramatically in
the last 25 years.With the development of commercially available gas chroma-
tography-mass spectrometer (GC-MS) systems, there has been a significant
increase in the number of organic pollutant fingerprints that have been dis-
covered and identified [53–73]. Identities of individual compounds or com-
positional fingerprints can be determined by highly sophisticated and advanced
instruments [5,64,74–88] and are used to provide information about the type
[62,64,82,89–92],amount [89,93–96],and source confirmation [1,53–55,97]
ofthese pollutants.
Different terms have been used in the literature to describe various environ-
mental organic pollutants/contaminants that are characterized in terms oftheir
molecular structures [1, 53–55]. The term chemical fossil was first used by
Eglinton and Calvin [98] to describe organic compounds in the geosphere whose
carbon skeleton suggested an unambiguous link with a known natural product.
In addition,other terms such as biological markers,organic tracers,biomarkers,
or molecular fossils,have also been used to describe such organic compounds
[1,53–56,60,61,63,66,68–73].In line with the current trends in environmental
organic chemistry and for the sake of consistency,the term molecular marker
(MM) suggested by Aboul-Kassim [1] will be used in this book to describe both
naturally occurring (i.e., biological and hence biomarker) and/or anthropo-
genically-derived organic (i.e.,non-biomarker) compounds that are present in
both aqueous and solid phase environments.
The main objectives of this chapter are: (1) to review the different toxic
organic pollutants present in both liquid and solid (i.e., sediment, soil, sus-
pended matter and biosolids as bacteria,plankton,etc.) phase environments as
well as complex organic mixture (COM) leachates from solid waste materials of
landfills and disposal sites;(2) to summarize the most recent analyses ofthese
MM pollutants; and (3) to discuss the optimum instrumental analytical
methods for organic pollutant characterization.
It is intended that the review of the different aspects and goals in this chap-
ter provides an up-to-date background for the succeeding chapters in this
volume. This will clarify the discussions about the different interaction
mechanisms between organic pollutants and various solid phases,their chem-
istry,and applicable modeling techniques that are presented in the subsequent
chapters.
6 T.A.T.Aboul-Kassim and B.R.T.Simoneit
2
Types of Organic Pollutants
Approximately one-half of the industrially produced organic chemicals reach
the global environment via direct and/or indirect routes,for example agricul-
tural practices, municipal and industrial wastes, and landfill effluents. These
products include a variety of pesticides and their metabolites, aliphatic and
aromatic organic derivatives of petroleum hydrocarbons and plastics,organic
solvents and detergents,phenols,PCBs,and organotin compounds.When these
substances reach the natural environment, various degradation and transfer
processes are initiated. The chemical properties of each organic compound
(such as molecular structure,volatility,ionic charge and ionizability,polarizabil-
ity, and water-solubility) determine which processes predominate. Currently
the prevalent opinion is that interaction processes, leading to activation in-
activation, physical sorption, and/or chemical binding or partitioning are
among the most widespread and important phenomena affecting toxic organic
pollutants in the global environment. Some general considerations and pro-
perties ofmajor organic pollutant groups,ofrelevance to the environment and
of importance to human health, will be summarized briefly in the following
subsections.
2.1
Petroleum Hydrocarbons
Hydrocarbons (HCs) ofpetroleum origin are widespread organic pollutants that
are found in both aquatic and solid phase environments [1,53–56,99,100].The
most common groups of compounds are aliphatic and polycyclic aromatic
hydrocarbons (PAHs).Ofthese the PAHs are toxic,carcinogenic,and sometimes
mutagenic to both aquatic organisms and ultimately humans [1].The following
is a briefdescription ofeach group.
2.1.1
Aliphatic Compounds
Aliphatic hydrocarbons,a diverse suite of compounds,are an important lipid
fraction which is either natural (i.e.,from photosynthesis by marine biota in-
habiting the surface waters or by terrestrial vascular plants) or anthropogenic
(i.e.,ofpetroleum origin from land runoff,and/or industrial inputs).Aliphatic
hydrocarbons have been studied and characterized from various environmental
multimedia [1,53–56,99–109].
Aliphatic hydrocarbons of petroleum origin (Fig.1) (also coal) in the en-
vironment are usually composed of:
1. Homologous long chainn-alkane series ranging from <C to >C with no
15 38
carbon number predominance [1,53–55,73,109–114]
2. Unresolved complex mixture (UCM) ofbranched and cyclic hydrocarbons [1,
53–56,68,70,113,115–119]
1 Organic Pollutants in Aqueous-Solid Phase Environments:Types,Analyses and Characterization 7
Fig.1. Chemical structures ofsome aliphatic hydrocarbon molecular markers as cited in the
text
3. Isoprenoid hydrocarbons such as norpristane (2,6,10-trimethylpentade-
cane),pristane (2,6,10,14-tetramethylpentadecane),and phytane (2,6,10,14-
tetramethylhexadecane) (Structures I–III,Fig.1) [1,53–56,68,70,120–123]
4. Tricyclic terpanes (Structure IV, Fig. 1), usually ranging from C H to
19 34
C H ,and in some cases to C H [68,124–126]
30 56 45 86
5. Tetracyclic terpanes such as 17,21- and 8,14-seco-hopanes (Structures V–VI,
Fig.1) [125–127]
6. Pentacyclic triterpanes, such as the 17a(H),21b(H)-hopane series (Struc-
tures VII–VIII, Fig.1), consisting of 17a(H)-22,29,30-trisnorhopane (T ),
m
8 T.A.T.Aboul-Kassim and B.R.T.Simoneit
17a(H),21b(H)-29-norhopane, and the extended 17a(H),21b(H)-hopanes
(>C ) with subordinate amounts of the 17b(H),21a(H)-hopane series and
31
18a(H)-22,29,30-trisnorneohopane (T ),[1,53–55,114]
s
7. Steranes and diasteranes with the 5a(H),14a(H),17a(H)-configuration (IX),
5a(H),14b(H),17b(H)-configuration (X),and the 13a(H),17b(H)-diastera-
nes (Structure XI,Fig.1) (e.g.,[1,53–55,101,103,105–107,117]).
Typical GC-MS traces of aliphatic hydrocarbon patterns representative of dif-
ferent environmental samples are shown in Fig.2.The aliphatic hydrocarbons of
petroleum contaminated sediment and water are present from C to C with no
16 38
carbon number predominance and a C at C and C or C (Figs.2a,b).The
max 21 30 32
source ofthese hydrocarbons as well as the UCM can be confirmed to be due to
petroleum input by the presence of the biomarkers discussed below.Crude oil
has a high concentration ofalkanes compared to UCM (Fig.2c) and typically a
smooth decreasing concentration from low carbon numbers to high [63, 66,
111]. The alkanes <C are initially lost by evaporation and subsequent bio-
20
degradation (see Chap.5) removes additional amounts ofthe same compounds,
leaving an enhancement ofthe isoprenoids (cf.,Figs.2a,b) [53–55,111,116].In
contrast,an example ofprimarily natural background alkanes from higher plant
waxes is shown in Fig.2d.This is a terrigenous component brought into marine
environments by river washout and atmospheric fallout and is sedimented with
minerals.Suchn-alkanes have a strong odd carbon number predominance and
a C at C ,C ,or C [56].A minor component from petroleum is also present
max 27 29 31
as UCM andn-alkanes from C to C .An example ofhydrothermal petroleum
20 26
is shown in Fig.2e,where then-alkanes range from C to C with significant
13 25
amounts ofisoprenoids.There have been numerous compositions reported for
petroleums formed from the hydrothermal alteration ofimmature organic mat-
ter in sediment covered marine rift areas as for example in the GulfofCalifornia
and the northeastern Pacific Ocean [128–130].Runofffrom roads,especially in
urban areas,contains significant amounts ofpetroleum residues.These consist
of lubrication oils,particles from vehicle emissions and fuel residues [1].An
example is shown in Fig.2f, where the dominant components are n-alkanes
ranging from C to C ,with a C at C and no carbon number predominance.
22 38 max 29
In other cases,the washout contains mainly a UCM with minor alkanes.
Characteristic examples of biomarker distributions typical for petroleum
consisting of tricyclic terpanes (key ion m/z 191),hopanes (key ion m/z 191),
and steranes/diasteranes (key ions 217, 218, 259) are shown in Fig.3. The
tertacyclic terpanes are not major components in the m/z 191 plots,because
their key ion is at m/z123.The tricyclic terpanes range from C to C ,with a
21 29
C at C and no C and C .The mature hopanes range from C to C ,with
max 23 22 27 27 35
the 17a(H),21b(H) configuration and the homologs >C are resolved into the
31
C-22SandRdiastereomers [68,73,68,114].The steranes range from C to C
27 29
and are generally less concentrated than the hopanes.The mature sterane series
have the 5a(H),14a(H),17a(H)- and 5a(H),14b(H),17b(H)-configurations
with all homologs also resolved into the respective C-21SandRdiastereomers
(Figs.3b,c).The diastereomers also range from C to C and in part coelute
27 29
with the steranes (Fig.3b). A summary of the identifications of the various
aliphatic hydrocarbons just discussed is given in Table1.
1 Organic Pollutants in Aqueous-Solid Phase Environments:Types,Analyses and Characterization 9
Fig.2a–c. GC-MS traces (m/z 99 key ion) ofvarious aliphatic hydrocarbon fractions from dif-
ferent environmental matrices:asediment – Red Sea;bwater – Red Sea;cKuwait crude oil
spill