Table Of ContentAstronomy&Astrophysicsmanuscriptno.pluto˙ch4 (cid:13)c ESO2009
January30,2009
Pluto’s lower atmosphere structure and methane
abundance from high-resolution spectroscopy
9 and stellar occultations
0
0
2 E.Lellouch1,B.Sicardy1,2,C.deBergh1,H.-U.Ka¨ufl3,S.Kassi4,andA.Campargue4
n
a
J 1 LESIA,ObservatoiredeParis,5placeJulesJanssen,92195Meudon,France
0 e-mail:[email protected]
3
2 Universite´PierreetMarieCurie,4placeJussieu,F-75005Paris,France;seniormemberofthe
] InstitutUniversitairedeFrance
P
E 3 EuropeanSpaceObservatory,Karl-Schwarzschild-Strasse2,D-85748GarchingbeiMu¨nchen,
. Germany
h
p 4 LaboratoiredeSpectrome´triePhysique,Universite´ JosephFourier,BP-87,F-38402St-Martin
-
o d’He`resCedex,France
r
t
s ReceivedJanuary,9,2009;revisedJanuary27,2009,accepted,January29,2009
a
[
ABSTRACT
1
v
2 Context.Plutopossessesathinatmosphere,primarilycomposedofnitrogen,inwhichthedetec-
8
tionofmethanehasbeenreported.
8
4 Aims.The goal is to constrain essential but so far unknown parameters of Pluto’satmosphere
.
1 suchasthesurfacepressure,loweratmospherethermalstucture,andmethanemixingratio.
0
Methods.Weuse high-resolution spectroscopic observations of gaseous methane, and a novel
9
0 analysisofoccultationlight-curves.
:
v Results.Weshowthat(i)Pluto’ssurfacepressureiscurrentlyinthe6.5-24µbarrange(ii)the
i
X methane mixing ratiois0.5±0.1%, adequate toexplain Pluto’sinverted thermal structure and
r ∼100 K upper atmosphere temperature (iii) a troposphere is not required by our data, but if
a
present, it has a depth of at most 17 km, i.e. less than one pressure scale height; in this case
methaneissupersaturatedinmostofit.Theatmosphericandbulksurfaceabundanceofmethane
arestrikinglysimilar,apossibleconsequenceofthepresenceofaCH -richtopsurfacelayer.
4
Keywords.Solarsystem:general;Infrared:solarsystem;KuiperBelt
1. Introduction
Since its detection in the 1980s (Brosch, 1995, Hubbard et al. 1988, Elliot et al. 1989), stellar
occultationshaverevealedremarkablefeaturesofPluto’stenuous(µbar-like)atmosphere.Pluto’s
upperatmosphereisisothermal(T∼100Kataltitudesabove1215kmfromPluto’scenter)andhas
undergonea pressureexpansionbyafactorof2from1988to2002,probablyrelatedtoseasonal
cycles,followedbyastabilizationover2002-2007(Sicardyetal.2003,Elliotetal.2003,2007,E.
Youngetal.2008).Belowthe1215kmlevel,occultationlightcurvesarecharacterizedbyasharp
2 E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance
drop(“kink”)influx,interpretedasduetoeithera∼10km-thickthermallyinvertedlayer(strato-
sphere)orabsorptionbyalow-altitudehazewithsignificantopacity(>0.15inverticalviewing).So
far,observationsofstellaroccultationshavenotprovidedconstraintsontheatmosphericstructure
atdeeperlevels,noronthesurfacepressure.
While Pluto’s atmosphere is predominantly composed of N , the detection of methane has
2
been reportedfrom 1.7 µm spectroscopy (Younget al. 1997),leading to a roughestimate of the
CH column density (1.2 cm-am within a factor of 3-4). Even before its detection, methane had
4
beenrecognizedtobethekeyheatingagentinPluto’satmosphere,abletoproduceasharpthermal
inversion (Yelle and Lunine, 1989, Lellouch 1994, Strobel et al. 1996). The large uncertainty in
thedataofYoungetal.,however,aswellastheunknownN columndensity,didnotallowoneto
2
determinetheCH /N mixingratio.
4 2
We here report on high-quality spectroscopic observations of gaseous CH on Pluto, from
4
which we separately determine the column density and equivalent temperature of methane.
Combining this information with a novel analysis of recent occultation lightcurves, we obtain a
precise measurement of the methane abundance, as well as new constraints on the structure of
Pluto’sloweratmosphereandthesurfacepressure.
2. VLT/CRIRESobservations
Plutoobservationswereobtainedwiththecryogenichigh-resolutioninfraredechellespectrograph
(CRIRES, Ka¨ufletal. 2004)installedonESO VLT(EuropeanSouthernObservatoryVeryLarge
Telescope)UT1(Antu)8.2mtelescope.CRIRESwasusedinadaptiveopticsmode(MACAO)and
witha0.4”spectrometerslit.TheinstrumentconsistsoffourAladdinIIIInSbarrays.Wefocussed
on the 2ν bandof methane,coveringthe 1642-1650,1652-1659,1662-1670and1672-1680nm
3
ranges, at a mean spectral resolution of 60,000,almost five times better than in the Young et al.
(1997) observations. Observations were acquired on August 1 (UT = 3.10-4.30) and 16 (UT =
0.55-2.20), 2008, corresponding to mean Pluto (East) longitudes of 299o and 179o respectively.
(WeusetheorbitalconventionofBuieetal.(1997)inwhichtheNorthPoleiscurrentlyfacingthe
Sun). Pluto’stopocentricDopplershift was +20.0and +24.8km/s (i.e. ∼0.11and ∼0.14nm) on
thetwodatesrespectively,ensuringproperseparationofthePlutomethanelinesfromtheirtelluric
counterparts.Oneachdate,wealsoobservedonetelluricstandardstar(HIP91347andHIP87220,
respectively).WeemphasizeheretheAugust1data,whichhavethehighestquality.
3. InferencesonPluto’sloweratmospherestructureandmethaneabundance
Theobservedspectrum(Fig. 1)showsthedetectionofnolessthan17methanelinesoftheP,Q
andRbranchesofthe2ν band,includinghighJ-levellines(uptoR7 andQ8),aswellas, more
3
marginally,thepresenceofafewweakerlinesbelongingtootherband(s)ofmethane(seebelow).
Thisspectralrichnessmakesitpossible,forthefirsttime,toseparatetemperatureandabundance
effectsinthePlutospectra.
Spectraweredirectlymodelledusingatellurictransmissionspectrumcheckedagainstthestan-
dardstarsobservations,a solar spectrum(FiorenzaandFormisano,2005)anda line-by-linesyn-
theticspectrumofPluto.ThethreecomponentswereshiftedaccordingtotheirindividualDoppler
shifts,andthenconvolvedtotheinstrumentalresolutionof60,000,determinedbyfittingthewidth
E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance 3
000...444
OObbsseerrvveedd,, 11 AAuugguusstt 22000088
000...333555 RR77 90 K, 0.75 cm-am
s)s)s) 000...333 RR66
nitnitnit
uuu RR55
arb. arb. arb. 000...222555 RR33 RR22
x (x (x ( 000...222
uuu
FlFlFl 000...111555
000...111
111666444222 111666444444 111666444666 111666444888 111666555000 111666555222 111666555444 111666555666 111666555888
WWWaaavvveeellleeennngggttthhh (((nnnaaannnooommmeeettteeerrrsss)))
000...333555
OObbsseerrvveedd,, 11 AAuugguusstt 22000088
90 K, 0.75 cm-am
000...333
s)s)s)
nitnitnit 000...222555
uuu
arb. arb. arb. 000...222 RR00 QQ bbrraanncchh ((QQ11--QQ88)) PP11
x (x (x (
uuu 000...111555
FlFlFl
PP44
PP33
000...111
000...000555
111666666444 111666666666 111666666888 111666777000 111666777222 111666777444 111666777666 111666777888 111666888000
WWWaaavvveeellleeennngggttthhh (((nnnaaannnooommmeeettteeerrrsss)))
Fig.1. Black: Pluto spectrum observed with VLT/CRIRES. Red: Best-fit isothermal model (90
K, 0.75 cm-am CH ), including telluric and solar lines. The general continuum shape is due to
4
absorptioninthe2ν +ν and2ν bandsofsolidmethane(seeDoute´etal.1999)
2 3 3
ofthetelluriclines(andcorrespondingtoaneffectivesourcesizeof0.33”).FormodellingthePluto
spectrum,weusedarecentCH linelist(Gaoetal.2009),basedonlaboratorymeasurements(po-
4
sitions and intensities) at 81 K, and including lower energy levels for 845 lines, determined by
comparison with the intensities at 296 K collected in the HITRAN database. Although the tem-
peratureof laboratorydata issimilar to Pluto’s, we used onlylinesforwhich energylevelswere
available, in order to avoid dubious extrapolation towards lower temperatures. These data show
that,inadditiontotheJ-manifoldsofthe2ν band,thespectralrangecontainsotherlinesoflow
3
energylevel(e.g.J=2near6085.2cm−1,seeFig. 2),whichappeartobemarginallydetectedin
thePlutospectrum(seeFig.3).
3.1.Isothermalfits
Wefirstmodelledthedataintermsofasingle,isothermalmethanelayer.Becausecollisionalbroad-
eningisnegligibleatthelowpressuresofPluto’satmosphere,resultsatthisstepareindependent
of Pluto’s pressure-temperaturestructure. Scattering was ignored, as justified below. The outgo-
ing radiation was integrated over angles, using the classical formulation in which the two-way
transmittanceisexpressedas2E (2τ),whereτisthezenithalopticaldepthoftheatmosphere.A
2
least-squareanalysisofthedatawasperformedinthe(temperature(T),columndensity(a))space.
Fig. 3showsthatthebestfitoftheAug.1,2008dataisachievedforT=90K.Toolow(resp.too
high)temperaturesleadtoanunderestimate(resp.overestimate)ofthehigh-Jlinesandanoveres-
timate(resp.underestimate)ofthelow-Jlines.Basedonleast-squarefitting,weinferredT=90+25
−18
4 E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance
-1 m) 0.003
c
K (
1 J=2 J=1
8
1 torr, 0.002 ν,
@ J=2 2 3 J=7
nt
e
ci
effi
o 0.001
c
n
ptio J=3
or J=3
s
b J=3
A
0.000
6083 6084 6085 6086 6087 6088
-1
Wavenumber (cm )
Fig.2.Laboratoryspectrumofmethaneat81K inthe6083-6088cm−1 range,demonstratingthe
existenceof strong,lowJ-level,linesin additiontothe R-branchmanifoldsof the2ν band.The
3
J-levelfortheselinesisdeterminedbycomparisonoftheirintensityat81Kandatroomtemper-
ature(seeGaoetal.2009).TheJ=2doubletnear6085.2cm−1 ismarginallydetectedinthePluto
spectrum(1643.4nm,seeFig. 3).
K and a = 0.75+0.55 cm-am forthe data of August1, and similar numbers(T = 80+25 K and a =
−0.30 −15
0.65+0.35cm-am)forAugust16.
−0.30
3.2.Combinationwithinferencesfromstellaroccultations
The above inferred methane temperatures, much warmer than Pluto’s mean surface temperature
(∼50 K, Lellouch et al. 2000) are inconsistent with the existence of a deep, cold and methane-
richtroposphere,suchasthe ∼40kmtroposphereadvocatedto matchestimatesofPluto’sradius
fromthePluto-Charonmutualevents(Stansberryetal.1994).Toquantifythisstatement,wecom-
binedourspectroscopicdatawithanewassessmentofstellaroccultationlight-curves.Besidesthe
isothermalpartandthe“kink”featurementionedpreviously,recenthigh-quality,occultationcurves
(Sicardyetal.2003,Elliotetal.2003,2007,E.Youngetal.2008,L.Youngetal.2008)exhibita
numberofremarkablecharacteristics:(i)alowresidualfluxduringoccultation,typicallylessthan
3 % of the unattenuatedstellar flux (ii) the conspicuousabsence of caustic spikes in the bottom
part of the light-curves(iii) the existence of a central flash, caused by Pluto’s limb curvature,in
occultationsinwhichtheEarthpassednearthegeometriccentreoftheshadow.
To determine the range of Pluto’s thermal structures that can account for these features, we
performedray-tracingcalculationsforavarietyoftemperature/pressureprofiles,expandingupon
theworkofStansberryetal.(1994).Forthistask,weassumedaclearatmosphere.Thisisjustified
by(i)theabsenceofcolourvariationinthecentralflash(L.Youngetal.2008)and(ii)thedifficulty
forhazestobeproducedphotochemicallyattherequiredopticaldepthinatenuousatmospherelike
Pluto’s(Stansberryetal.1989).Wethusadoptedthe“stratosphericgradient”interpretationofthe
light-curves,andexploredabroadrangeofsituations,varyingthevalueofthisgradient,thelevel
atwhichtheinversionlayerconnectstoatroposphere(i.e.thetropopausepressure),andthedepth
andlapserateofthistroposphere(Fig.4).
E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance 5
000000000.........333333333666666666
000000000.........222222222444444444
000000000.........333333333444444444
000000000.........333333333222222222 000000000.........222222222222222222
s)s)s)s)s)s)s)s)s) s)s)s)s)s)s)s)s)s)
nitnitnitnitnitnitnitnitnit 000000000.........333333333 nitnitnitnitnitnitnitnitnit 000000000.........222222222
uuuuuuuuu uuuuuuuuu
b. b. b. b. b. b. b. b. b. 000000000.........222222222888888888 9999999900000000 KKKKKKKK b. b. b. b. b. b. b. b. b. 9999999900000000 KKKKKKKK
ararararararararar ararararararararar 000000000.........111111111888888888
x (x (x (x (x (x (x (x (x ( 000000000.........222222222666666666 7777777700000000 KKKKKKKK x (x (x (x (x (x (x (x (x ( 7777777700000000 KKKKKKKK
uuuuuuuuu 111111112222222200000000 KKKKKKKK uuuuuuuuu 000000000.........111111111666666666 111111112222222200000000 KKKKKKKK
FlFlFlFlFlFlFlFlFl 000000000.........222222222444444444 RRRRRRRR ======== 11111111111111119999999933333333 kkkkkkkkmmmmmmmm FlFlFlFlFlFlFlFlFl RRRRRRRR ======== 11111111111111119999999933333333 kkkkkkkkmmmmmmmm
000000000.........222222222222222222 RRRRRRRR ======== 11111111111111116666666688888888 kkkkkkkkmmmmmmmm 000000000.........111111111444444444 RRRRRRRR ======== 11111111111111116666666688888888 kkkkkkkkmmmmmmmm
000000000.........222222222 000000000.........111111111222222222
111111111666666666444444444222222222.........666666666 111111111666666666444444444222222222.........888888888 111111111666666666444444444333333333 111111111666666666444444444333333333.........222222222 111111111666666666444444444333333333.........444444444 111111111666666666444444444333333333.........666666666 111111111666666666444444444777777777.........888888888 111111111666666666444444444888888888 111111111666666666444444444888888888.........222222222 111111111666666666444444444888888888.........444444444 111111111666666666444444444888888888.........666666666 111111111666666666444444444888888888.........888888888
WWWWWWWWWaaaaaaaaavvvvvvvvveeeeeeeeellllllllleeeeeeeeennnnnnnnngggggggggttttttttthhhhhhhhh (((((((((nnnnnnnnnaaaaaaaaannnnnnnnnooooooooommmmmmmmmeeeeeeeeettttttttteeeeeeeeerrrrrrrrrsssssssss))))))))) WWWWWWWWWaaaaaaaaavvvvvvvvveeeeeeeeellllllllleeeeeeeeennnnnnnnngggggggggttttttttthhhhhhhhh (((((((((nnnnnnnnnaaaaaaaaannnnnnnnnooooooooommmmmmmmmeeeeeeeeettttttttteeeeeeeeerrrrrrrrrsssssssss)))))))))
000000000.........222222222
000000000.........111111111888888888
000000000.........111111111999999999
000000000.........111111111666666666
000000000.........111111111888888888
s)s)s)s)s)s)s)s)s) s)s)s)s)s)s)s)s)s)
nitnitnitnitnitnitnitnitnit 000000000.........111111111444444444 nitnitnitnitnitnitnitnitnit 000000000.........111111111777777777
uuuuuuuuu uuuuuuuuu
b. b. b. b. b. b. b. b. b. 000000000.........111111111222222222 b. b. b. b. b. b. b. b. b. 000000000.........111111111666666666 9999999900000000 KKKKKKKK
ararararararararar 9999999900000000 KKKKKKKK ararararararararar
Flux (Flux (Flux (Flux (Flux (Flux (Flux (Flux (Flux ( 000000000.........111111111 71717171717171710202020202020202 0 0 0 0 0 0 0 0KKKKKKKK KKKKKKKK Flux (Flux (Flux (Flux (Flux (Flux (Flux (Flux (Flux ( 000000000000000000..................111111111111111111454545454545454545 71717171717171710202020202020202 0 0 0 0 0 0 0 0KKKKKKKK KKKKKKKK
000000000.........000000000888888888 RRRRRRRR ======== 11111111111111119999999933333333 kkkkkkkkmmmmmmmm
RRRRRRRR ======== 11111111111111119999999933333333 kkkkkkkkmmmmmmmm
000000000.........000000000666666666 RRRRRRRR ======== 11111111111111116666666688888888 kkkkkkkkmmmmmmmm 000000000.........111111111333333333 RRRRRRRR ======== 11111111111111116666666688888888 kkkkkkkkmmmmmmmm
000000000.........111111111222222222
111111111666666666666666666555555555.........444444444 111111111666666666666666666555555555.........777777777 111111111666666666666666666666666666 111111111666666666666666666666666666.........333333333 111111111666666666666666666666666666.........666666666 111111111666666666666666666888888888 111111111666666666666666666888888888.........222222222 111111111666666666666666666888888888.........444444444 111111111666666666666666666888888888.........666666666 111111111666666666666666666888888888.........888888888 111111111666666666666666666999999999
WWWWWWWWWaaaaaaaaavvvvvvvvveeeeeeeeellllllllleeeeeeeeennnnnnnnngggggggggttttttttthhhhhhhhh (((((((((nnnnnnnnnaaaaaaaaannnnnnnnnooooooooommmmmmmmmeeeeeeeeettttttttteeeeeeeeerrrrrrrrrsssssssss))))))))) WWWWWWWWWaaaaaaaaavvvvvvvvveeeeeeeeellllllllleeeeeeeeennnnnnnnngggggggggttttttttthhhhhhhhh (((((((((nnnnnnnnnaaaaaaaaannnnnnnnnooooooooommmmmmmmmeeeeeeeeettttttttteeeeeeeeerrrrrrrrrsssssssss)))))))))
Fig.3.Modelfitting ofthe August1,2008Plutospectrum(histograms)zoomedonfourspectral
regions.TheblackcurveisamodelwithnomethaneonPluto.The90K,70K,and120Kcurves
indicateisothermal,single-layer,fits, including0.75cm-am,1.3cm-amand0.45cm-amofCH ,
4
respectively.Therotationaldistributionoflinesindicatesthata90Ktemperatureprovidesthebest
fit.The“R=1193km”model(pink,fitalmostindistinguishabletothe90Kmodel)correspondstoa
6K/kmstratospherictemperaturegradient,a1193kmradius(7.5µbarsurfacepressure)anda0.62
% methane mixingratio. The “R=1168km” modelincludesa 6 K/km stratospheric temperature
gradient, joining with a wet tropospheric lapse rate of -0.1 K/km below 1188 km (tropopause)
andextendingdowntoa 1168kmsurfaceradius(29µbar).This20km-deeptropospheremodel,
optimized here with CH = 0.36 %, is inconsistent with the methane spectrum; for this thermal
4
profile,theminimumradiusis1172km(seeFig.4).Thewavelengthscaleisintheobserverframe.
These spectral regions are those showing maximum sensitivity to the methane temperature (or
equivalentlydepth of the troposphere),as they include low J-level and high J-level lines, but for
quantitativeanalysis,aleast-squarefitonalllineswasperformed.
Wereachedthefollowingconclusions(Fig. 4and 5):(i)thestratospherictemperaturegradient
isinthe3-15K/kmrange.Gradientssmallerthan3K/kmwouldleadtoresidualfluxesinexcess
of 3 %; gradients larger than 15 K/km produce residual fluxes lower than 1 %, and are anyway
notexpectedfromradiativemodels(Strobeletal.1996)(ii)withinthisrange,theexistenceofthe
centralflash implies a minimumatmosphericpressure of 7.5±1.2bar (iii) the absence of caustic
spikes in the region of low residual flux puts stringent constraints on a putative troposphere. In
most cases, it restricts such a troposphereto be at most shallow (2-5 km deep, dependingon its
meantemperature),andthesurfacepressuretobelessthan∼10µbar.Anexceptionisthefamily
ofthermalprofileswithintermediate(5-7K/km)stratospherictemperaturegradientsandacold(<
38K)tropopause,whichappearconsistentwithoccultationcurvesforanytroposphericdepth.In
6 E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance
Fig.4. Range of possible thermal profiles (pressure-temperature (left) and radius-temperature
(right)) in Pluto’s atmosphere. From bottom to top, they have stratospheric thermal gradients of
3 and 4 K/km (red profiles), 5 K/km (one orange and one green), 6 K/km (two green), 7 K/km
(green),and9and15K/km(blue).Allprofilesarecontinuousinfirstandsecondordertemperature
derivatives.Mostoftheseprofileshavenoorverylimitedtropospheres(lessthan5kmindepth),
inordertomatchtheresidualfluxobservedduringstellaroccultationsandavoidtheformationof
strongcaustics(seeFig.5).Onlyprofilesingreenandorange,withmoderatestratospherictemper-
aturegradients(5-7K/km)andacoldtropopause(<38K)canhavesignificanttropospheres.The
lapserateinsuchtropospheresrangesfrom-0.1K/km,correspondingtotheN wetadiabat(green
2
profiles)to-0.6K/km(N dryadiabat,orangeprofile).TheCRIRESspectraindicatethatthesewet
2
and dry profilescannotextenddeeper than p ∼24µbar (1172and 1169km, respectively).In the
leftpanel,thesolidlineonthetoprightisthelocusofminimumatmosphericpressureimpliedby
theobservationofacentralflash,andthesolidlineontheleftisthevapourpressureequilibrium
ofN .Thedashed-dottedlineisthevapourpressureequilibriumofCH fora0.5%mixingratio.
2 4
Thedottedlineat50Killustratesthemaximumpossiblenear-surfacegastemperature.Theshaded
areas represent the range of possible tropospheres. If Pluto has a troposphere, methane must be
supersaturatedovermostofit.
fact,suchprofiles(greencurvesinFig.4and5)leadtomodestcausticspikesintheregionofthe
“kink”,i.e.wherespikesareobservedinactualobservations,forwhichtheycanbemistaken.
The allowed thermal profiles were finally tested against the methane spectrum. We assumed
uniformatmosphericmixing,aplausiblecasegiventhat(i)thesourceofmethaneisatthesurface
(ii)itsequivalenttemperatureimpliesthatalargefractionofmethaneisintheupperatmosphere,
andperformedaleast-squareanalysisofthedatainthe(surfaceradius,CH mixingratio)domain.
4
Notsurprisinglyinviewoftheisothermalfits,thermalprofileshavingno(oramini-)troposphere
areallconsistentwiththemethanespectrum.Forexample,forastratospherictemperaturegradient
of6K/km,asurfaceradiusof1193km(surfacepressure=7.5µbar,i.e.theminimumrequiredby
the occultations)providesan adequatefit ofthe August1 data fora CH mixingratioof 0.62%
4
.Incontrast,profilesincludingtoodeepatropospherecanberejectedasgivingtoomuchweight
to cold methane and leading to a line distribution inconsistentwith the data. Based on such fits,
the maximum troposphericdepth is found to be 17 km (i.e. 0.85 pressure scale heights) and the
E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance 7
Fig.5.Ray-tracingcalculationsofoccultationlight-curvesforrepresentativetemperatureprofiles
of Fig. 4. The shaded area near the bottom of the light-curve represents the range of residual
flux(0.00-0.032)observedintheCFHTAugust21,2002occultation(Sicardyetal.2003),witha
closestapproachtoshadowcentreof597km.(WeestimatethattheAATJune12,2006occultation
light-curve (E. Young et al. 2008) consistently indicates a 0.01-0.03 residual flux). Red: light-
curve for the thermal profile with 3 K/km stratospheric gradient of Fig. 4, extending to 9 µbar.
This“stratosphere-only”modelisconsistentwithobservedlight-curves.Blue:light-curveforthe
thermal profile with 15 K/km stratospheric gradient, and a 4-km deep troposphere at ∼36.5 K.
Thisprofileproducesanunacceptablecausticsspike,causedbythesecondary(“farlimb”)image
Green: light-curve for a thermal profile with 6 K/km gradient in the inversion layer, joining the
N saturationvapourpressurewitha∼-0.1K/kmgradientinthetroposphere.Inthiscase,modest
2
causticsarestillproduced,buttheyappearnearthelight-curvekink.
maximumsurfacepressure is24 µbar. Takingallconstraintstogether,Pluto’ssurfacepressurein
2008isintherange6.5-24µbar.Therangeofmethanecolumndensitiesis0.65-1.3cm-am.Deeper
(i.e. colder) models require larger methane columns than shallower models, but since they also
haveahighersurfacepressure,themethanemixingratioisaccuratelydeterminedtobe0.51±0.11
%. Constraints from the August 16 data are somewhat looser (a maximum surface pressure and
tropospheredepthof32µbarand23km,respectively).TheminimumPlutoradiusimpliedbythe
data is 1169-1172km (Fig. 4). This value holdsfor the nominalastrometric solutionsfor stellar
occultations,typicallyuncertainby∼10km.Giventhisuncertainty,ourlowerlimitontheradiusis
consistentwithmostinferencesfromthemutualevents(nominally1151-1178km,see Tholenet
al.1997).Thetropospheredepthisfreefromthisuncertainty,andthereforebetterconstrainedthan
Pluto’sradius.
8 E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance
4. Discussion
4.1.Methanemixingratioandpossiblesupersaturation
Throughabsorptionofsolarinputinthenear-IRandradiationat7.7µm,methaneisthekeyheat-
ing/coolingagentinPluto’satmosphere,andinparticularmustberesponsibleforitsthermalinver-
sion.Detailedcalculations(Strobeletal.1996)showthat,eveninthepresenceofCOcoolingand
foranassumed3µbar“surface”(i.e.baseoftheinversionlayer)pressure,a0.3%methanemixing
ratio produces a 7 K/km “surface” gradient and a temperature increase of ∼36 K in the first 10
km.Althoughsuchcalculationswillneedtoberedoneinthelightofourresults,a0.5%methane
mixingratioisclearlyadequatetoexplainthe∼6K/kmgradientindicatedbytheoccultationdata,
furtherjustifyingourassumptiontoneglecthazeopacity.
The presence of methane in Pluto’s stratosphere implies that it is not severely depleted by
atmospheric condensation. Yet, a remarkable result is that for models including a troposphere,
methaneappearstobesignificantlysupersaturated(Fig. 4),byasmuchasafactor∼30fora∼38
Ktropopause.GiventhatPluto’stroposphereisatmostshallow(lessthan1pressurescaleheight),
thisplausiblyresultsfromconvectiveovershootassociatedwithdynamicalactivity,combinedwith
apaucityofcondensationnucleiinaclearatmosphere.
4.2.Theoriginoftheelevatedmethaneabundance
In agreementwith Younget al. (1997),the CH / N mixing ratio we deriveis ordersof magni-
4 2
tudelargerthanthe ratiooftheirvapourpressuresatanygiventemperature,andthe discrepancy
isevenworseifoneconsidersthatmethaneisaminorcomponentonPluto’ssurface.Twoscenar-
ios(Spenceretal.1997,Traftonetal.1997)havebeendescribedtoexplainthiselevatedmethane
abundance(i)theformation,throughsurface-atmosphereexchanges,ofathinmethane-richsurface
layer(theso-called“detailedbalancing”layer),whichinhibitsthesublimationoftheunderlying,
dominantlyN , frost,andleadsto anatmospherewith the same compositionasthisfrost(ii)the
2
existenceofgeographicallyseparatedpatchesofpuremethane,warmerthannitrogen-richregions,
andwhichundersublimationboosttheatmosphericmethanecontent.Interestingly,detailedanal-
ysesof1.4-2.5µmand1-4µmmid-resolutionspectragiveobservationalcredittobothsituations.
Itisnoteworthythatour0.5%atmosphericabundanceisidenticaltotheCH /N ratiointheN -
4 2 2
CH -COsubsurfacelayerofDoute´etal.(1999),consistentwiththedetailedbalancingmodel,and
4
agreesalsowiththesolidmethaneconcentrationinferredbyOlkinetal.(2007)(0.36%).Inthis
framework,atypical15µbarsurfacepressurecouldbeexplainediftheN -CH -COsubsurface
2 4
layerisat40.5K(consistentwiththeN icetemperaturemeasurementsofTrykaetal.,1994)and
2
overlaid by a 80 % CH - 20 % N surface layer. On the other hand, and in favour of the alter-
4 2
natescenario,thermalIRlightcurves(Lellouchetal.2000)aswellassublimationmodelsforCH
4
(Stansberryetal.1996)indicatethatextendedpureCH patchesmayreachdaysidetemperatures
4
wellinexcessof50K;thisismorethansufficienttoexplainthe∼0.075µbarCH partialpressure
4
indicatedbyourdata.
Discriminatingbetween the two cases may rely onthe time evolutionofthe N pressureand
2
CH mixingratio.Inparticular,thedecreaseofatmosphericCH withincreasingheliocentricdis-
4 4
tance is expected to lead to a drop of the CH abundance in the detailed balancing layer, which
4
E.Lellouchetal.:Pluto’sloweratmospherestructureandmethaneabundance 9
maydelay the decreaseofthe N pressure(Traftonet al. 1998).AssumingT = 100K, Younget
2
al.(1997)reporteda0.33-4.35cm-ammethaneabundancein1992.Althoughtheirerrorbarsare
verylarge,their bestfit value(1.2cm-am)islargerthanours(0.65cm-amforthis temperature).
Combinedwith the factorof ∼2 pressureincreasebetween1988and2002,thissuggeststhatthe
methane mixing ratio is currently declining. The ALICE and Rex instruments on New Horizons
will measure Pluto’s surface pressure and methane abundancein 2015. Along with the data pre-
sentedinthispaper,thiswillprovidenewkeysontheseasonalevolutionofPluto’satmosphereand
thesurface-atmosphereinteractions.
Acknowledgements. ThisworkisbasedonobservationsperformedattheEuropeanSouthernObservatory(ESO),proposal
381.C-0247.WethankDarrellStrobelforconstructivereviewing.
References
Brosch,N.1995,Mon.Not.R.Astron.Soc.276,571
Buie,M.W.,Tholen,D.J.&Wasserman,L.H.1997,Icarus,125,233-244
Doute´,S.etal.1999,Icarus,142,421
Elliot,J.L.etal.1989,Icarus77,148
Elliot,J.L.etal.2003,Nature424,165
Elliot,J.L.etal.2007,AstronJ.134,1-13
Fiorenza,C.&Formisano,V.2005,Planet.SpaceSci.,53,1009
Gao,B.,Kassi,S.&Campargue,A.2009,J.Mol.Spectro,253,55
Hubbard,W.B.,etal.1988,Nature336,452
Ka¨ufl,H.U.etal.2004,SPIE,5492,1218
Lellouch,E.1994,Icarus,108,225
Lellouch,E.etal.2000,Icarus,147,220
Olkin,C.B.etal.2007,AstronJ.133,420
Sicardy,B.etal.2003,Nature424,168
Spencer,J.R.,etal.1997,inPlutoandCharon,eds.S.A.Stern&D.J.Tholen(TheUniversityofArizonaPress),435
Stansberry,J.A.,Lunine,J.I.&Tomasko,M.G.1989,GRL,16,1221
Stansberry,J.A.,etal.1994,Icarus,111,503
Stansberry,J.A.etal.1996,Planet.SpaceSci.44,1051
Strobel,D.F.,Zhu,X.&Summers,M.E.1996,Icarus,120,266
Tholen,D.J.&Buie,M.W.1997,inPlutoandCharon,eds.S.A.Stern&D.J.Tholen(TheUniversityofArizonaPress),
193
Trafton,L.M.,Hunten,D.M.,Zanhle,K.J.&McNutt,R.L.1997,inPlutoandCharon,eds.S.A.Stern&D.J.Tholen(The
UniversityofArizonaPress),475
Trafton,L.M,Matson,D.L.&StansberryJ.A.1998,inSolarSystemIces,eds.B.Schmitt,C.deBergh,andM.Festou
(KluwerAcademicPublishers),773
Tryka,K.etal.1994,Icarus,112,513
Yelle,R.V.&Lunine,J.I.1989,Nature,399,288
Young,L.A.,etal.1997,Icarus127,258
Young,E.etal.2008,Astron.J.,136,1757
Young,L.etal.2008,Bull.Amer.Astron.Soc.40,461