Table Of ContentNew
Series
Numerical Data
and Functional Relationships
in Science and Technology
GROUP III VOLUME 37
Condensed Phase Diagrams
Matter
and Physical Properties
of Nonequilibrium Alloys
SUBVOLUME B
Physical Properties
of Ternary Amorphous Alloys
Part 1
Systems from Ag-Al-Ca to Au-Pd-Si
123
Lanndolt-Börrnstein
Nummerical Dataa and Functiional Relatioonships in SScience andd Technologgy
New Series / Edditor in Chieef: W. Martiienssen
Grooup III: CCondenseed Matterr
Vollume 37
Phhase DDiagraams and Phhysicaal Propertiees
of Noneequilibbriumm Allooys
Subbvolume B
Phyysical Prooperties oof Ternarry Amorpphous Allloys
Partt 1
Systtems fromm Ag-Al-CCa to Au-Pd-Si
U. CCarow-Waatamura, DD.V. Louzzguine andd A. Takeuuchi
Editted by Y. KKawazoe, U. Caroww-Watamuura and J.--Z. Yu
ISSN 1615-1925 (Condensed Matter)
ISBN 978-3-642-03480-0 Springer Berlin Heidelberg New York
Library of Congress Cataloging in Publication Data
Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie
Editor in Chief: W. Martienssen
Vol. III/37B1: Editors: Y. Kawazoe, U. Carow-Watamura and J.-Z. Yu
At head of title: Landolt-Börnstein. Added t.p.: Numerical data and functional relationships in science and technology.
Tables chiefly in English.
Intended to supersede the Physikalisch-chemische Tabellen by H. Landolt and R. Börnstein of which the 6th ed. began publication in 1950 under title:
Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik.
Vols. published after v. 1 of group I have imprint: Berlin, New York, Springer-Verlag
Includes bibliographies.
1. Physics--Tables. 2. Chemistry--Tables. 3. Engineering--Tables.
I. Börnstein, R. (Richard), 1852-1913. II. Landolt, H. (Hans), 1831-1910.
III. Physikalisch-chemische Tabellen. IV. Title: Numerical data and functional relationships in science and technology.
QC61.23 502'.12 62-53136
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation,
reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this
publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and
permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law.
Springer is a part of Springer Science+Business Media
springeronline.com
© Springer-Verlag Berlin Heidelberg 2011
Printed in Germany
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement,
that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
Product Liability: The data and other information in this handbook have been carefully extracted and evaluated by experts from the original literature.
Furthermore, they have been checked for correctness by authors and the editorial staff before printing. Nevertheless, the publisher can give no
guarantee for the correctness of the data and information provided. In any individual case of application, the respective user must check the correctness
by consulting other relevant sources of information.
Cover layout: Erich Kirchner, Heidelberg
Typesetting: Authors and Redaktion Landolt-Börnstein, Heidelberg
SPIN: 1271 8078 63/3020 - 5 4 3 2 1 0 – Printed on acid-free paper
Editor in Chief
Y. Kawazoe
Institute for Materials Research
Center for Computational Materials Science
Tohoku University
Sendai 980-8577, Japan
email: [email protected]
Editors
U. Carow-Watamura J.-Z. Yu
Institute for Materials Research Deparment of Physics
Center for Computational Materials Science Tsinghua University
Tohoku University Beijing 100084, P.R. China
Sendai 980-8577, Japan email: [email protected]
email: [email protected]
Authors
U. Carow-Watamura A. Takeuchi
Institute for Materials Research WPI-AIMR
Center for Computational Materials Science Tohoku University
Tohoku University Sendai 980-8577
Sendai 980-8577, Japan email: [email protected]
email: [email protected]
D.V. Louzguine
WPI-AIMR
Tohoku University
Sendai 980-8577
email: [email protected]
Landolt-Börnstein
Springer Internet
Tiergartenstr. 17, D-69121 Heidelberg, Germany http://www.springermaterials.com
fax: +49(0) 6221 487-8648
email: [email protected]
Preface
The database project AMOR for amorphous materials was started in 1993 with the aim to collect
published and unpublished data on the formation ability (compositions, critical size, etc.) of amorphous
materials and their physical and chemical properties. The idea of this project is to provide useful and
essential data for researchers in the world in a compact and easily available form. The data on binary,
ternary and multicomponent systems of amorphous alloys along with their preparation conditions were
collected to date in this database.
In the first volume of this series, LB III/37A, published in 1996, deals with 351 ternary amorphous
alloys found by this publication year and presents 6450 compositions of fully amorphous, mixtures of
amorphous and crystalline, crystalline, quasicrystalline and other phases in form of Gibbs phase triangles
(composition triangles) and tables.
The present volume LB III/37B is a successor volume to LB III/37A and accumulates the data of
structural characterization, thermal, mechanical, magnetic, electric and optical properties as well as the
corrosion behaviour of the ternary alloys listed in volume A. In addition, we have added in this volume B
another 32 ternary amorphous alloy systems found in the period from 1995 to 2008 to compensate for the
lack of important information on ternary amorphous alloys.
Part 1 of volume LB III/37B contains the systems of ternary amorphous alloys from Ag-Al-Ca to
Au-Pd-Si. (The systems from B-Be-Fe to Co-W-Zr and from Cr-Fe-P to Si-W-Zr are subject of Part 2 and
Part 3, respectively.) The reader will find that we have chosen alphabetic order so that, for example,
Cu-based Cu-Zr-Al as well as Zr-based Zr-Cu-Al are found in the same section Al-Cu-Zr, and thus can be
easily compared.
Most of the amorphous alloys produced before the 1990s, being marginal glass-formers, have been
obtained in the shape of melt-spun ribbons. At that time much attention has been paid to Fe-based alloys
with metalloids as a solvent, due to their good magnetic properties. With the improvement of the
preparation methods, amorphous alloys are nowadays available as films, ribbons or rods (some of them
with sizes up to several cm), depending on their composition and preparation method. These amorphous
materials demonstrate high strength, good elasticity, high wear and corrosion resistance. Also is the recent
research on amorphous materials not limited any more to pure amorphous alloys of metals or metalloids,
but includes a much wider range of structures such as amorphous-crystalline composites, i.e. crystals
included in an amorphous alloy matrix, which also show very interesting mechanical properties.
Amorphous alloys are an attractive material that can serve as a precursor for producing unprecedented
new materials through crystallization. Examples include the above mentioned amorphous-crystalline
composites and also the quasi-crystals, which have a unique structure and are important for basic research
in physics.
Volumes LB III/37A and B focus on ternary alloy systems, since it is widely accepted among the
researchers in this field that the fundamental properties of amorphous alloys are, in principle, determined
by the properties of the ternary alloy systems. Thus, looking at the ternary systems the reader will easily
grasp differences between amorphous alloys and their corresponding crystalline counterparts. A third
volume (subvolume C) containing the data for multicomponent, i.e. quaternary, quinary, etc., amorphous
materials, which are of great interest for industrial applications, is now in preparation and we hope to
present it to the reader in the near future.
Sendai, December 2010 Y. Kawazoe
Acknowledgements
We very much appreciate the efforts of Dr. R. Poerschke, the Managing Editor in the early stage of this
project, and Prof. Dr. W. Martienssen, Editor in Chief of the Landolt-Bornstein New Series, who made
the decision to open a new volume of Condensed Matter for our IMR data project. We also would like to
thank Dr. W. Finger, the Development Editor, for checking through the huge manuscript and taking care
of the whole publication process.
We also appreciate the efforts of Prof. Dr. A. Brueckner-Foit, Prof. Dr. T. Kaneko, Prof. Dr. H.
Kimura and Prof. Dr. W. Martienssen who supported our project with helpful explanations and important
comments. We also wish to thank Ms. T. Asai, Ms. I. Chen, Ms. K. Chen, Ms. S. Chen, Ms. E.
Hoshikawa, Ms. E. Hotta, Ms. I. Ishikawa, Ms. R. Itoh, Ms. H. Kameyama, Ms. S. Liew, Ms. L.
Louzguina, Ms. W. Ootsuki, Ms. K. Oyamada, Ms. M. Matsuda, Ms. C. Wang, Dr. Q. Wang, Ms. S. Wu
and Ms. L. Zen who keyed in all the numerical data and created figures and tables with great patience at
the computer, and, in particular, Ms. A. Bahramy, Ms. S. Hongo and Ms. H. Yamaura for their technical
support when correcting and improving the figures for the manuscript. Special thanks are also due to Mr.
R. Note and Mr. K. Sato who shared much of the daily affairs and kept our PCs in best working
conditions, and to Ms. Y. Akiyama, Mr. T. Ito, Mr. S. Miura and Mr. S. Wada, who were in charge of the
management of the IMR Materials Database KIND and the maintenance of the computer system.
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Technologically most important systems listed in the present book . . . . . . . . . . . 3
References for 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Characterization Techniques for Amorphous Alloys . . . . . . . . . . . . . . . . . 6
2.1 Structural Characterization Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 X-ray Diffractometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Anomalous X-ray Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 X-ray Absorption Spectroscopy (XAS) . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Small-Angle X-ray (SAX) or Neutron (SAN) Scattering . . . . . . . . . . . . . . . . 9
2.1.5 Extended X-ray Absorption Fine Structure (EXAFS) . . . . . . . . . . . . . . . . . . 9
2.1.6 X-ray Photoelectron Spectroscopy (XPS) . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.7 Mössbauer Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 General Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Density, Volume and Thermal Expansion Coefficient . . . . . . . . . . . . . . . . . . 10
2.2.2 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Thermal Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3.1 Differential Thermal Analysis (DTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3.2 Differential Scanning Calorimetry (DSC) . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3.3 Differential Isothermal Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Hardness Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1.1 Vickers Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1.2 Vickers Microhardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1.3 Knoop Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Uniaxial Tensile (Compressive) Test . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Bend Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Fatigue Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Magnetostriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Electrical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.1 Electrical Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.2 Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.3 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Corrosion Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.1 General Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.2 Types of Corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
References for 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Contents IX
3 List of Ternary Amorphous Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Graphical and Numerical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
List of Properties Surveyed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
List of Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Ag-Al-Ca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 DSC/DTA Curve and Glass Formation . . . . . . . . . . . . . . . . . . . . . . 37
2.4.1 Glass Transition Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Ag-Al-La (001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Ag-Al-Mg (002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.2 X-ray Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 DSC/DTA Curve and Glass Formation . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7.1 Transition Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1 Resistivity and Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.2 Temperature Dependence of Resistivity . . . . . . . . . . . . . . . . . . . . . 40
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Ag-Ca-Mg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.2 X-ray Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 DSC/DTA Curve and Glass Formation . . . . . . . . . . . . . . . . . . . . . . 41
2.4.1 Glass Transition Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.2 Reduced Glass Transition Temperature . . . . . . . . . . . . . . . . . . . . . 42
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 Supercooled Liquid Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7.1 Transition Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.8 Critical Quantities for Formation of Amorphous Phase . . . . . . . . . . . . . . 43
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Ag-Ce-Cu (003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.2 X-ray Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.7 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Fatigue Strength, Fracture and Critical Fracture Temperature . . . . . . . . . . 46
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Ag-Cu-Fe (004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.2 X-ray Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.3 Interference Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.4 Radial Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.5 Radial Structure Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.8.4 Extended X-ray Absorption Fine Structure . . . . . . . . . . . . . . . . . . . . 50
1.8.5 X-ray Absorption Near-Edge Structure . . . . . . . . . . . . . . . . . . . . . . 52
2.4 DSC/DTA Curve and Glass Formation . . . . . . . . . . . . . . . . . . . . . . 53
2.5.1 Heat of Crystallization or Relaxation . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Thermomagnetic Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Hysteresis Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Coercive Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Remanence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
X Contents
4.3.1 Magnetic Moment and Magnetic Anisotropy . . . . . . . . . . . . . . . . . . . 55
4.8 Mössbauer Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8.2 Magnetic Hyperfine Field and Line Splitting . . . . . . . . . . . . . . . . . . . 56
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Ag-Cu-Ge (005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.1 Density and Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.2 X-ray Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.1.1 Electronic Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.1.3 Debye Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1 Resistivity and Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2 Temperature Dependence of Resistivity . . . . . . . . . . . . . . . . . . . . . 61
5.3 Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1 Hall Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 Temperature Dependence of Hall Coefficient . . . . . . . . . . . . . . . . . . 63
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Ag-Cu-Mg (006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1 Resistivity and Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Thermoelectric Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Ag-Cu-P (007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.7 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1 Resistivity and Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2 Temperature Dependence of Resistivity . . . . . . . . . . . . . . . . . . . . . 67
5.2 Change of the Resistivity by Deformation . . . . . . . . . . . . . . . . . . . . 67
5.4 Thermoelectric Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Ag-Cu-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.2 X-ray Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.7 Coordination Number, Valence Electron Number and Interatomic Distances . . 68
2.4 DSC/DTA Curve and Glass Formation . . . . . . . . . . . . . . . . . . . . . . 68
2.4.1 Glass Transition Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.4.2 Reduced Glass Transition Temperature . . . . . . . . . . . . . . . . . . . . . 70
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.6 Supercooled Liquid Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.7.1 Transition Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.1 Stress-Strain Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Ag-Mg-Y (008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Ag-Pd-Si (009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
1.2 X-ray Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.1 Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.4.1 Glass Transition Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.5.1 Heat of Crystallization or Relaxation . . . . . . . . . . . . . . . . . . . . . . . 76
3.9 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Al-Au-La (010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.4.1 Glass Transition Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Contents XI
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.6 Supercooled Liquid Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Al-B-Co (011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.6 Fatigue Strength, Fracture and Critical Fracture Temperature . . . . . . . . . . 78
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Al-B-Fe (012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.4 DSC/DTA Curve and Glass Formation . . . . . . . . . . . . . . . . . . . . . . 79
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.6 Fatigue Strength, Fracture and Critical Fracture Temperature . . . . . . . . . . 80
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Al-B-Ni (013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.5 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.6 Fatigue Strength, Fracture and Critical Fracture Temperature . . . . . . . . . . 81
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Al-Be-Ti (014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Al-Ca-Co (015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.5 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Al-Ca-Cu (016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.4 DSC/DTA Curve and Glass Formation . . . . . . . . . . . . . . . . . . . . . . 84
2.4.1 Glass Transition Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4 Elastic Moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.5 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.6 Fatigue Strength, Fracture and Critical Fracture Temperature . . . . . . . . . . 85
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Al-Ca-Fe (017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1.1 Density and Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.5 Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4 Elastic Moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.5 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.6 Fatigue Strength, Fracture and Critical Fracture Temperature . . . . . . . . . . 87
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Al-Ca-Ga (018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
1.1 Density and Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.1.1 Electronic Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.1.3 Debye Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1 Resistivity and Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Al-Ca-Mg (019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
1.2 X-ray Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Description:In the present volume physical properties of ternary amorphous alloys are presented. For each of the 385 alloy systems the data, e.g., on density and structure, on thermal, mechanical, magnetic, electrical and optical properties, as well as on corrosion behavior, are provided in text, tables and fig