Table Of ContentSchool of Chemical Science
Irish Separation Science Cluster (ISSC)
Dublin City University
Glasnevin, Dublin 9.
Fabrication and characterisation of nano-agglomerated
monolithic stationary phases for separation science.
Ali Alwy, B.Sc.
Student No: 10118802
Under the supervision of:
Dr. Damian Connolly, Pharmaceutical and Molecular Biotechnology Research
Centre (PMBRC), Department of Chemical and Life Sciences, Waterford Institute of
Technology.
Dr. Blánaid White, School of Chemical Sciences, Irish Separation Science Cluster,
Dublin City University, Glasnevin, Dublin 9, Ireland.
Prof. Brett Paull, Australian Centre for Research on Separation Science (ACROSS),
Department of Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
A thesis submitted to Dublin City University for consideration
for the degree of:
Master of Science.
1
Declaration
I hereby certify that this material, which I now submit for assessment on the
programme of study leading to the award of Masters in Science is entirely my own
work, that I have exercised reasonable care to ensure that the work is original, and
does not to the best of my knowledge breach any law of copyright, and has not been
taken from the work of others save and to the extent that such work has been cited
and acknowledged within the text of my work.
Signed: Student No: 10118802 Date: 07/01/2013
2
Abstract
The following thesis provides an extensive study into the fabrication, surface
modification and physical characterisation of polymer monoliths in capillary formats.
These polymer monoliths were subsequently immobilised with metal oxide
nanoparticles for separation of phosphorylated compounds. The fabricated
monolithic columns in capillary format, in all instances, were modified with
diethylamine and subsequently immobilised with citrate stabilised iron oxide
nanoparticles. The monolithic stationary phases were characterised using back
pressure and sC4D measurements, which can provide information on the
reproducibility and density of the stationary phase. Citrate stabilised iron oxide
nanoparticles (Fe O NP’s) with a particle size of 15.8 nm were electrostatically
3 4
immobilised on a poly(butylmethacrylate-co-ethylene dimethacrylate) monolith
bearing grafted functional polymer chains with quaternary amine groups resulting in
homogeneous and high density coverage of iron oxide nanoparticles on the
monolithic column demonstrated by FE-SEM images. The monolithic column
immobilised with Fe O nanoparticles was connected to a HPLC instrument and
3 4
used in the separation of phosphorylated compounds such as adenosine, adenosine
monophosphate, adenosine diphosphate and adenosine triphosphate using gradient
elution. In a related study, commercially available centrifugally driven solid-phase
extraction silica monoliths were immobilised with 15.8 nm citrate stabilised iron oxide
nanoparticles with a dense coverage without detrimental blockage of the flow-
through macropores. Since Fe O is known to form reversible complexes with
3 4
phosphorylated species, the silica monoliths were subsequently used for the
enrichment of selected nucleotides and phosphorylated peptides.
3
List of abbreviations
BuMA – Butyl methacrylate
CapLC – Capillary liquid chromatography
CEC – Capillary electrochromatography
DAP - 2,2-dimethoxy-2-phenacetophenone
EDMA – Ethylene dimethacrylate
EDX – Energy dispersive X-ray
Fe O nanoparticles – Iron oxide nanoparticles
3 4
FE-SEM – Field emission scanning electron microscopy
GMA – Glycidyl methacrylate
VAL - 2-vinyl-4,4-dimethylazlactone
HETP – Height equivalent to a theoretical plate
HPLC – High Performance Liquid Chromatography
IMAC – Immobilised Metal Affinity Chromatography
MOAC – Metal Oxide Affinity Chromatography
sC4D – Scanning capacitively coupled contactless conductivity detection
SEM – Scanning electron microscope
SPE – Solid phase extraction
UV - Ultraviolet
List of poster presentations
Conference on Analytical Science Ireland (CASi) – 6th CASi on the 21-22
February 2011, The Helix, DCU.
Conference at the European Lab Automation congress (ELA 2011) in
Hamburg, Germany, from 30 June to 1 July 2011.
Conference on Functional Nanomaterials in DCU on the 6-7 September 2011.
4
Table of Contents
Abstract ...................................................................................................................... 3
List of abbreviations ................................................................................................... 4
List of poster presentations ........................................................................................ 4
Chapter 1: Introduction to monolithic stationary phases, their preparation and
characterisation. ....................................................................................................... 11
1.1. Monolithic Stationary Phases ......................................................................... 11
1.2. Advantages of monolithic stationary phases over particulate columns .......... 12
1.3 Silica based monoliths (inorganic monoliths) .................................................. 16
1.4 Organic polymer monoliths ............................................................................. 17
1.4.2 Effect of cross-linker on porous structure ................................................. 19
1.4.3 Effect of porogen on porous structure ....................................................... 19
1.5 Polymerisation initiation strategies for polymer monoliths. .............................. 20
1.5.1 Thermally initiated polymerisation ............................................................. 21
1.5.2 Photo-initiated polymerisation ................................................................... 22
1.6 Post-polymerisation modification of monoliths ................................................ 22
1.6.1 Chemical modification of reactive monoliths ............................................. 22
1.6.2 Disadvantages of using co-polymerisation methods to produce reactive
monoliths. .......................................................................................................... 25
1.6.3 Mechanism of photografting using benzophenone ................................... 26
1.6.4 Modification of capillary polymer monoliths with selected nanoparticles. .. 30
1.7 Characterisation of monolithic stationary phases ............................................ 36
1.7.1. Field Emission Scanning Electron Microscope/ Electron dispersive X-rays
(FE-SEM/EDX) .................................................................................................. 36
1.7.2. Scanning capacitively coupled contactless conductivity (sC4D) ............... 37
1.8 Overall aims of the presented thesis ............................................................... 43
Chapter 2: Fabrication and characterisation of nano-structured capillary
polymeric monoliths for separation of phosphorylated compounds ................ 45
1. Introduction .......................................................................................................... 45
1.1 Metal Oxide Affinity Chromatography (MOAC) ............................................... 45
1.2 Nano-particle modified monoliths for enrichment of phosphorylated compounds
.............................................................................................................................. 47
1.2.1 Hydroxyapatite. ......................................................................................... 48
1.2.2 Nickel-cobalt nano-particles ...................................................................... 49
5
1.2.3 Titanium dioxide/zirconium dioxide nano-particles. ................................... 49
1.2.4 Iron oxide nanoparticles ............................................................................ 50
1.3 Overarching aims of this chapter. ................................................................... 51
2.2. Experimental. .................................................................................................... 51
2.2.1 Reagents and materials. .............................................................................. 51
2.2.2 Instrumentation ............................................................................................ 52
2.2.3 Silanisation of teflon coated fused silica capillary ........................................ 53
2.2.4 Preparation of polymer monoliths in capillary formats. ................................. 53
2.2.5 Surface modification of polymer monoliths with quaternary ammonium
groups. .................................................................................................................. 53
2.2.6 Synthesis of citrate stabilised iron oxide nanoparticles ................................ 54
2.2.7 Immobilisation of iron oxide nanoparticles on modified polymer monoliths .. 54
2.2.8 Scanning contactless conductivity characterisation of capillary polymer
monoliths............................................................................................................... 55
3. Results and Discussion ........................................................................................ 55
3.1 Characterisation of Fe O nanoparticles ......................................................... 55
3 4
3.2 Characterisation of nanoparticle-modified monoliths using backpressure
measurements. ..................................................................................................... 57
3.3 Characterisation of nanoparticle-modified monoliths using scanning contactless
conductivity measurements................................................................................... 64
3.4 Characterisation of nanoparticle-modified monoliths using field emission
scanning electron microscopy. .............................................................................. 69
3.5 Separation of phosphorylated compounds (nucleotides) on an iron oxide
nanoparticle modified polymer monolith. ............................................................... 71
4. Conclusions .......................................................................................................... 73
Chapter 3: Development of an iron-oxide nanoparticle modified silica monolith in spin
column format for enrichment of phosphorylated compounds. ................................. 74
1. Introduction .......................................................................................................... 74
2. Experimental. ....................................................................................................... 76
2.1 Reagents and materials. ................................................................................. 76
2.2 Instrumentation. .............................................................................................. 76
2.3 Immobilisation of Fe O nanoparticles on SPE silica monoliths ...................... 77
3 4
2.4 Preparation of tryptic digests ........................................................................... 77
3. Results and discussion. ........................................................................................ 77
3.1 Immobilisation of Fe O nanoparticles on aminated monolithic spin columns. 77
3 4
6
3.2 Immobilisation of Fe O nanoparticles on monolithic spin columns using layer-
3 4
by-layer methods. ................................................................................................. 83
3.3 Chromatographic method development and method validation for LC
separation of selected nucleotides. ....................................................................... 85
3.4. Trap and release of nucleotides using a MonoSpin cartridge modified with
Fe O nanoparticles using the layer by layer approach. ........................................ 87
3 4
3.5. Development of chromatographic separation of α-casein tryptic peptides. .... 91
4. Conclusion ........................................................................................................... 99
References ............................................................................................................. 101
List of Figures
Figure 1.1:SEM images of monolithic stationary phases. (a) Polymer monolith. (b,c)
silica monolith ........................................................................................................... 12
Figure 1.2:Van Deemteer plot showing contributions of terms A, B and C. .............. 14
Figure 1.3:Van Deemter plot of a particulate stationary phase (Mightysil) and a silica
monolith (Chromolith). The inlay is a magnification of the main image. Mightysil (■)
and Chromolith (ᴏ).................................................................................................... 15
Figure 1.4:Some examples of monomers used for the preparation of polymer
monoliths. ................................................................................................................. 18
Figure 1.5:Effect of dodecanol in the porogenic solvent on differential pore size
distribution curves of a poly(GMA-co-EDMA) monoliths........................................... 20
Figure 1.6:Pore size distribution of GMA-co-EDMA monoliths prepared at 55 (1) 60
(2), 65 (3), 70 (4), 80 (5) and 90 ºC (6) ..................................................................... 21
Figure 1.7:Chemical conversion of epoxy groups by means of various reagents.I.
amination; II.alkylation; III. sulfonation; IV. hydrolysis; V. carboxymethylation; VI.
modification with p-hydroxyphenylboronic acid ........................................................ 23
Figure 1.8: Chemical modification of porous polymer monoliths with glycidyl
methacrylate and subsequently with diethylamine to produce an anion exchanger. 24
Figure 1.9: Schematic of co-polymerisation of a monolith with a functional monomer,
expressing a functional group (R) ............................................................................ 25
Figure 1.10: UV-Vis absorbance spectrum of benzophenone. ................................. 26
Figure 1.11: Schematic shows surface photografting reaction using benzophenone..
................................................................................................................................. 27
Figure 1.12: Schematic showing the two-step sequential photografting procedure for
selected monomer i.e. GMA using benzophenone as the initiator. .......................... 28
Figure 1.13: CEC separation of a mixture of alkylbenzenes obtained a photografted
methacrylate-ester-based monolithic column ........................................................... 29
Figure 1.14: Reaction schematic showing photografting of azlactone moiety on a
monolithic column followed by subsequent reaction with ethylenediamine. ............. 29
Figure 1.15: Scanning electron micrograph (SEM) images of (a) BuMA-co-EDMA-co-
AMPS monolith, (b) a latex nano-particle coated version of the same monolith and
7
(c) the separation of a mixture of carbohydrates using a 100 x 0.25 mm I.D. capillary
housing. .................................................................................................................... 31
Figure 1.16: SEM images of a polymer monolith agglomerated with 20 nm gold
nano-particles. .......................................................................................................... 34
Figure 1.17: Schematic diagram of the protocol used for modification of the surface
chemistry of a GNP-modified monolith via ligand exchange with thiol compounds
(upper). ..................................................................................................................... 35
Figure 1.18:Diagram of the cell model showing the basic configuration of the C4D
electrodes. ................................................................................................................ 38
Figure 1.19: Schematic above shows scanning of a capillary monolith in 1 mm
increments using C4D. .............................................................................................. 39
Figure 1.20: sC4D profiles of Column #1 and Column #2 with a digital photograph of
Column #2 showing the 9 mm void between the monolithic frit and the packed resin.
(a) Column void, (b) monolithic frit, (c) packed bed of Dionex PAX100 resin ........... 41
Figure 1.21: (C) sC4D profiles of poly(S-co-DVB) monoliths within the channels of the
COC microfluidic chips, (D) a scanning electron micrograph of the poly(S-co-DVB)
monolith in the channel and (E) ×6 magnification of (D) at the channel wall ............ 42
Figure 1.22: Breakthrough curves for a coating solution of 1 mM DOSS used to
modify the stationary phase within a monolithic capillary column. ............................ 43
Figure 2.1: Common strategies for enrichment of phosphorylated compounds
including peptides..................................................................................................... 46
Figure 2.2: Bidentate binding mode of phosphates to a metal oxide surface (Me =
metal) ....................................................................................................................... 47
Figure 2.3: SEM images and EDX spectra for polymer monoliths with different mass
loadings of hydroxyapatite nano-rods....................................................................... 49
Figure 2.4: MALDI-MS spectrum of a β-casein tryptic digest before (A) and after (B)
enrichment on an iron oxide nanoparticle modified polymer monolith.. .................... 51
Figure 2.5:TEM image of prepared iron oxide nanoparticles. Scale bar (bottom right)
is divided into five 20 nm segments.......................................................................... 56
Figure 2.6:Dynamic light scattering data for determination of size distribution of
prepared iron oxide nanoparticles. ........................................................................... 56
Figure 2.7:Schematic diagram of (a) two-step photografting of GMA to a
methacrylate monolith and (b) amination of poly(GMA) grafts and subsequent iron
oxide nanoparticle attachment. ................................................................................ 58
Figure 2.8:Backpressure measurements for Monolith A before grafting/amination
(green plot), after amination (blue plot) and after immobilisation of iron oxide
nanoparticles (red plot). ............................................................................................ 59
Figure 2.9:Backpressure measurements for Monolith B before grafting/amination
(green plot), after amination (blue plot) and after immobilisation of iron oxide
nanoparticles (red plot). ............................................................................................ 60
Figure 2.10:Schematic diagram of a monolith pore (a) before grafting, (b) after
grafting and amination and (c) after subsequent immobilisation of iron oxide
nanoparticles. ........................................................................................................... 63
8
Figure 2.11:Schematic representation of intramolecular chain collapse of chelating
polymer grafts when a DionexPropac IMAC-10 column is flushed with copper cations
(displayed as green circles) ...................................................................................... 64
Figure 2.12:Overlay of scanning C4D profiles of Monolith A before grafting/amination
(a), after grafting/amination (b) and after nanoparticle immobilisation (c)................. 66
Figure 2.13:Overlay of scanning C4D profiles of Monolith B before grafting/amination
(a), after grafting/amination (b) and after nanoparticle immobilisation (c)................. 67
Figure 2.14: Backpressure profiles and scanning C4D profiles for Monolith A (a,c)
and Monolith B (b,d). ................................................................................................ 69
Figure 2.15:Fe-SEM images of the base monolith at 1,000 and 15,000 magnification
(a,b) and the same monolith after nanoparticle attachment at 45,000 and 130,000
magnification (c,d). ................................................................................................... 70
Figure 2.16: Overlay of scanning C4D profiles of Monolith A before grafting/amination
(a), after grafting/amination (b) and after nanoparticle immobilisation (c)................. 71
Figure 2.17: Gradient separation of nucleotides on an iron oxide nanoparticle
modified monolith.. ................................................................................................... 72
Figure 3.1:Silica monolith modified by cerium oxide nanoparticles .......................... 75
Figure 3.2:Schematic diagram of a MonoSpin cartridge assembly ......................... 78
Figure 3.3:Typical solid phase extraction operating protocol for MonoSpin columns
................................................................................................................................. 78
Figure 3.4:Schematic diagram of direct electrostatic attachment of Fe O
3 4
nanoparticles to an aminated silica monolith. ........................................................... 79
Figure 3.5:Digital photograph (looking down the sample well) of an aminated silica
monolith after coating with citrate-stabilised Fe O nanoparticles. ........................... 80
3 4
Figure 3.6:FE-SEM images of an aminated silica MonoSpin with immobilised Fe O
3 4
nanoparticles. ........................................................................................................... 81
Figure 3.7:EDX spectrum of an aminated silica MonoSpin with immobilised Fe O
3 4
nanoparticles (single layer coating). ......................................................................... 81
Figure 3.8: (a) Schematic diagram of proposed penetration depth of electron beam in
EDX. Not all immobilised nanoparticles are irradiated by the beam. (b) Not all
emitted X-rays reach detector due to due random emission vectors leading to
reduced accuracy. .................................................................................................... 82
Figure 3.9:(a): Molecular structure of poly(diallyldimethylammonium) chloride. (b):
Schematic representation of layer-by-layer assembly of negatively charged
nanoparticles using a positively charged linear polymer. ......................................... 83
Figure 3.10:FE-SEM images of a silica monolith modified with Fe O nanoparticles
3 4
using a layer-by-layer approach.(a) 11,000 x magnification, (a) 180,000 x
magnification, (a) 250,000 x magnification, (a) 220,000 x magnification. ................. 84
Figure 3.11: EDX spectrum of an aminated silica MonoSpin with 4 layers of
immobilised Fe O nanoparticles (layer-by-layer coating). ....................................... 85
3 4
Figure 3.12: Optimised separation of a 5 µM standard of adenosine, AMP, ADP and
ATP overlaid with a blank injection. .......................................................................... 86
Figure 3.13:Linearity plots for (a) adenosine, (b) AMP, (c) ADP and (d) ATP.. ........ 87
9
Figure 3.14: HPLC analysis of the flow-through fraction from a Fe O nanoparticle
3 4
modified MonoSpin (a) and a blank MonoSpin (b) ................................................... 88
Figure 3.15:HPLC analysis of the water rinse fraction from a Fe O nanoparticle
3 4
modified MonoSpin (a) and a blank MonoSpin (b). .................................................. 89
Figure 3.16: HPLC analysis of the eluted fraction from a Fe O nanoparticle modified
3 4
MonoSpin (a) and a blank MonoSpin (b). ................................................................. 89
Figure 3.17:HPLC analysis of the eluted fraction from a Fe O nanoparticle modified
3 4
MonoSpin showing pre-concentration factorsup to 373 %. ...................................... 90
Figure 3.18:Amino acid sequence of α-casein showing the sites of phosphorylation91
Figure 3.19:Amino acid sequence of α-casein showing all possible tryptic peptides.
Phosphopeptides have a red bar at the phosphorylation site. .................................. 92
Figure 3.20: Effect of flow rate upon separation of α-casein tryptic peptides. (a) blank
at 0.4 mL/min, (b): peptide mix at 0.4 mL/min, (c): 0.5 mL/min, (d): 0.6 mL/min, (e):
0.7 mL/min, (f): 0.8 mL/min.. ................................................................................... 93
Figure 3.21:Effect of gradient slope upon separation of α-casein tryptic peptides.. . 94
Figure 3.22:Optimised separation of α-casein tryptic peptides (a) overlaid with a
blank (b). Upper chromatogram pair shown at full scale. ......................................... 95
Figure 3.23:Overlay of (a) blank, (b) peptide standard, (c) flow-through fraction and
(d) 1 % NH OH elution fraction for a Blank Aminated MonoSpin. ............................ 96
2
Figure 3.24: Overlay of (a) blank, (b) flow-through fraction, (c) peptide standard and
(d) 1 % NH OH elution fraction for a Fe O nanoparticle single-layer modified
2 3 4
MonoSpin ................................................................................................................. 97
Figure 3.25: Overlay of (a) blank, (b) peptide standard and (c) flow-through fraction
for a Fe O nanoparticle modified MonoSpin using a layer-by-layer approach. ....... 98
3 4
Figure 3.26. Overlay of (a) blank, (b) flow-through fraction (c) peptide standard and
(d) 1 % NH OH elution fraction for a TiO MonoSpin column. .................................. 99
2 2
Acknowledgements
I would like to thank Prof. Brett Paull (ACROSS) and Dr. Damian Connolly (WIT),
firstly for the opportunity to undertake this Masters and also for all the guidance and
advice over the duration of this Masters.
I would like to thank my family, especially my beloved mother Manthura Ahmed
Athman and dad Alwy Khalifa, for all the support and guidance in this road we call
life. I would also like to thank my schartz Sameea without which I would not have
completed this Masters.
Many thanks also go to all the technical staff and postgraduates of the School of
Chemical Sciences, for the many answered questions.
10
Description:Centre (PMBRC), Department of Chemical and Life Sciences, Waterford Institute of These polymer monoliths were subsequently immobilised with metal oxide nanoparticles for separation of phosphorylated compounds. Chapter 1: Introduction to monolithic stationary phases, their preparation and.