Table Of ContentPairingmechanism forhigh temperature superconductivity inthecuprates: whatcanwelearn
from the two-dimensional t− J model?
Huan-Qiang Zhou1
1Centre for Modern Physics and Department of Physics,
Chongqing University, Chongqing 400044, The People’s Republic of China
Morethantwentyyearshavepassedsincehightemperaturesuperconductivityinthecopperoxides(cuprates)
wasdiscoveredbyJ.G.BednorzandK.A.Mu¨llerin1986[1]. Althoughintensetheoreticalandexperimental
0 effortshavebeendevotedtotheinvestigationofthisfascinatingclassofmaterials,thepairingmechanismre-
1 sponsibleforunprecedented hightransitiontemperaturesT remainselusive. Theoretically, thedifficultylies
c
0
inthefactthatthisclassofmaterials,asdopedMott-Hubbardinsulators[2],involvestrongelectroniccorrela-
2
tions,whichrendersconventionaltheoreticalapproachesunreliable. Recentprogressinnumericalsimulations
n ofstronglycorrelatedelectronsystemsinthecontextoftensornetworkrepresentations[3,4]makesitpossible
a togetaccesstoinformationencodedintheground-statewavefunctionsofthetwo-dimensionalt−Jmodel-a
J minimalmodel,aswidelybelieved,tounderstandelectronicpropertiesofdopedMott-Hubbardinsulators[5–
9 8]. Inthisregard, anintriguingquestioniswhetheror notthetwo-dimensional t−J modelholdsthekeyto
1 understandinghightemperaturesuperconductivityinthecuprates.Asitturnsout,suchakeyliesinasupercon-
ductingstatewithmixedspin-singletd+s−waveandspin-triplet p (p )-wavesymmetriesinthepresenceof
x y
] ananti-ferromagneticbackground[9].Here,thed+s-wavecomponentinthespin-singletchannelbreaksU(1)
n
symmetryinthechargesector,whereasboththeanti-ferromagneticorderandthespin-tripletp (p )-wavecom-
o x y
ponentbreaksSU(2)symmetryinthespinsector. Therefore,fourgaplessGoldstonemodesoccur. However,
c
evenifweresorttotheKosterlitz-Thoulesstransition[10],onlythed+s-wavesuperconductingcomponentsur-
-
r vivesthermalfluctuations. ThisturnsthreegaplessGoldstonemodes,arisingfromSU(2)symmetrybreaking,
p
intotwo degenerate soft modes, withtwicethe spin-triplet p (p )-wave superconducting energy gap as their
u x y
characteristicenergyscale: oneisaspin-tripletmodeobservedasaspinresonancemodeininelasticneutron
s
. scattering,theotherisaspin-singletmodeobservedasaA1gpeakinelectronicRamanscattering.Thescenario
at allowsustopredictthatpairingisofd+s-wavesymmetry, withthetwodegenerate softmodesasthelong-
m soughtkeyingredientsindeterminingthetransitiontemperatureTc,thusofferingapossiblewaytoresolvethe
controversyregardingtheelusivemechanismforhightemperaturesuperconductivityinthecuprates.
-
d
n PACSnumbers:74.20.-z,74.20.Mn,74.20.Rp
o
c
[ Imagine if we would have been able to solve a model etersareindependentofsitesonthelattice.
system describing dopedMott-Hubbardinsulators on a two- Now let us switch on thermal fluctuations. Suppose we
1
dimensionalsquarelattice,whoseground-statewavefunction restrict ourselves to a strict two dimensional system. Then,
v
8 isasuperconductingstatewithmixedspin-singletd+s−wave eveniftheKosterlitz-Thoulesstransition[10]isinvoked,only
5 andspin-tripletp (p )−wavesymmetriesinthepresenceofan spin-singletd+s-wavesuperconductingcomponentsurvives
x y
3 anti-ferromagneticbackground,withtheorderparametersfor thermal fluctuations. However, the non-abelian SU(2) sym-
3
the s-wave, d-wave, and p (p )-wave superconductingcom- metry is not allowed to be broken at any finite tempera-
. x y
1 ponents, together with the anti-ferromagnetic order parame- ture [11, 12]. This immediately implies that the Goldstone
0 ter, shown in Fig. 1, in a properdoping range. Note that ∆ modes arising from the spontaneous symmetry breaking of
0 d
and ∆ are, respectively, the spin-singlet d-wave and s-wave SU(2) in the spin sector have to be turned into degenerate
1 s
: superconducting energy gaps, whereas ∆p is the spin-triplet softmodes,withtwicethespin-tripletpx(py)-wavesupercon-
v
p (p )-wave superconducting energy gap and N is the anti- ductingenergygapastheircharacteristicenergyscale: oneis
i x y
X ferromagneticNe´elorderparameter. A fewpeculiarfeatures aspin-tripletmodeassociatedwiththeanti-ferromagneticor-
r of this state are: (i) Both the 90 degree (four-fold) rotation der,withthemomentumtransfer(π,π),andtheotherisaspin-
a symmetryandthetranslationsymmetryunderone-siteshifts singletmodeassociatedwiththespin-triplet p (p )-wavesu-
x y
are spontaneously broken on the square lattice. (ii) Spin- perconductingcomponent,withthemomentumtransfer(0,0).
rotation symmetry SU(2) is spontaneously broken, due to Ontheotherhand,thereisnothingtopreventfromthebreak-
the simultaneousoccurrenceof boththe p (p )−wave super- ingofthediscretefour-foldrotationsymmetryonthesquare
x y
conductingcomponentandtheanti-ferromagneticorder. (iii) lattice. Actually,thisbrokensymmetrynotonlymanifestsit-
U(1)symmetryinthechargesectorisspontaneouslybroken, selfintheadmixtureofasmalls-wavecomponenttothedom-
due to pairing in both spin-singlet and spin-triplet channels. inantd-wavesuperconductingstate(seeFig.1,leftpanel),but
Here, we emphasize that the symmetry mixing of the spin- also protectsthe spin-singletsoftmodethat is unidirectional
singletandspin-tripletchannelsarisesfromthespin-rotation asitarisesfromthep (p )-wavesuperconductingcomponent.
x y
symmetrybreaking,simplybecausespinisnotagoodquan- Our argument leads to a scenario that, at any finite tem-
tumnumber. (iv)Allsuperconductingcomponentsarehomo- perature, the pairing is of d + s-wave symmetry, with two
geneous,inthesensethattheirsuperconductingorderparam- degeneratesoftmodesactingasthe keyingredientsin deter-
2
mining the transition temperature Tc. Actually, two distinct 2∆ 2∆
ewniethrgtyhesccaolensv2en∆t∗ioannadlEsurepsearcreonindvuocltvoerds:,i2n∆a∗marairskeesdfrcoomntrtahset 2∆ 2∆ds ∆∆/sd 2∆ 2∆p*
anti-ferromagneticNe´elorderparameterN, whichisrespon- δ
sibleforpairing,withitscouplingstrengthdecreasingalmost
linearly with doping, whereas E = 2∆ , which is respon-
res p
sible for condensation. Therefore, E must scale with the δ δ
res
superconductingtransition temperature T , i.e., E ∼ k T ,
c res B c
withk beingtheBoltzmannconstant[seeFig.1,rightpanel]. FIG. 1: (color online) The doping dependence of the order pa-
B
Similarly, 2∆∗ scales as 2∆∗ ∼ k T∗, with T∗ being the so- rameters for a model system describing doped Mott-Hubbard in-
B
calledpseudogaptemperature[13,14]. Inaddition,onemay sulators on a two-dimensional square lattice, whose ground-state
expect that E < 2∆ , simply due to the fact that the pre- wave function is a superconducting state with mixed spin-singlet
res d d+s−waveandspin-tripletp (p )−wavesymmetriesinthepresence
dominant d-wave superconductingcomponentsurvives ther- x y
ofananti-ferromagneticbackground, withtheorderparametersfor
mal fluctuations. Considering that both the superconducting
the s-wave,d-wave,and p (p )-wavesuperconductingcomponents,
gap∆d andthetransitiontemperatureTc characterizethesu- togetherwiththeanti-ferroxmaygneticorderparameterN. Leftpanel:
perconductivity,theyshouldtrackeachotherintheentiredop- Thesuperconductinggaps∆ and∆ forthespin-singletd-waveand
d s
ingrange, implying∆d ∼ kBTc. Infact, forthe t− J model, s-wavecomponentsasafunctionofdopingδ,withtheirratio∆s/∆d
aolulorwsismuuslattoioenstiinmdaicteateasutnhiavteErsraesl c≈oe1ffi.2c5i∆endt[κ9].≈T5h.3is7inintuthrne sahnodwEnreisn=th2e∆inpsfeot.rRthieghatnptia-nfeerlr:oTmhaegenneetircgyorsdcearleasn2d∆th∗e∼spkBinT-t∗ri∼plNet
p (p )−wavesuperconductingorderasafunctionofdopingδ,with
scalingrelation: E =κk T . x y
res B c Nbeingtheanti-ferromagneticorder,andk theBoltzmannconstant.
B
Notethatthetwodistinctenergyscalesintheunderdoped Acrossover fromtheBose-Einsteincondensation (BEC)regimeto
regimearesplitofffromonesingleenergyscaleinthe(heav- theBardeen-Cooper-Schrieffer (BCS)regimeoccurs, whenthetwo
ily) overdoped regime. This naturally results in a crossover energy scales merge into one single energy scale in the (heavily)
from the Bose-Einstein condensation (BEC) regime to the overdoped regime. Note that, in general, Eres < 2∆d. Indeed,
Bardeen-Cooper-Schrieffer (BCS) regime, as conjectured in Eres ≈1.25∆d,aspredictedfromthetwo-dimensionalt−Jmodel.In
addition,E scaleswiththesuperconductingtransitiontemperature
Ref.[15],whichinturnisessentiallyequivalenttothephase res
T : E ∼k T
fluctuation picture proposed by Emery and Kivelson [16]. c res B c
However, there is an importantdifference: the superconduc-
tivityweakensintheheavilyunderdopedregime,notonlybe-
causeofthelossofphasecoherence,butalsobecauseofthe (heavily)overdopedregimeasaconsequenceoftheevolution
decreaseofthesuperconductinggap∆ withunderdoping. of the Fermiarcs in the underdopedregimeto a large Fermi
d
surface in the (heavily) overdopedregime [30, 31]. We em-
Nowafundamentalquestioniswhetherornotsucha sce-
phasizethatthepseudogapneartheantinodalregiondoesnot
narioisreallyrelevanttothehighT problem. Thisbringsus
c
characterize a precursor to the superconducting state, in the
tothephenomenologyofthehightemperaturecupratesuper-
conductors. sensethatthepseudogapsmoothlyevolvesintothesupercon-
First, let us focus on the two distinct energy scales 2∆∗ ducting gap at Tc [13, 30, 31]. Instead, it coexists with the
superconductinggap of the d + s-wave symmetry in the su-
and E . Physically, the two distinct energy scales mea-
res
perconductingstate. More likely, a precursorpairing occurs
sure, respectively, the pairing strength and the coherence of
thesuperfluidcondensate. Thisnaturallyleadsto twodiffer- inthenodalregion[32],withitsonsettemperaturelowerthan
T∗, but above T , which may be identified with the Nernst
entphases: oneischaracterizedbyincoherentpairing,which c
regime[33, 34]. As observed, the superconductinggapnear
may be identified with the pseudogapphase; the other is as-
the nodes scales as k T [29]. This makes a strong case for
sociated with the emergenceof a coherentcondensateof su- B c
our argument, if one takes into account the smallness of the
perconductingpairs,whichmaybeidentifiedwiththesuper-
conductingphaseofd+ s-wave symmetry[see Fig.2]. Evi- s-wave superconductinggap. On the other hand, ample evi-
dencehasbeenaccumulated,overtheyears,fortheuniversal
denceforthetwodistinctenergyscaleswasreportedinangle-
scalingrelationE = κ k T ,validforbothsoftmodes,i.e.,
resolved photoemission spectra [17–20], electronic Raman res B c
thespin-tripletresonancemodeininelasticneutronscattering
spectra [21–24], scanning tunneling microscopy [25], c-axis
experiments[35–41]andthespin-singletmodeobservedasa
conductivity[26],Andreevreflection[27],magneticpenetra-
A peakinelectronicRamanscattering[21,42–46],respec-
tiondepth[28],andotherprobes(forareview,see,Ref.[29]. 1g
tively. The experimentally determined κ is around 6, quite
Actually,thesestudiesindicatethatthegapneartheantinodal
closetoourtheoreticalestimate. Thispresentsapossibleres-
region, which is identified as the pseudogap, does not scale
olutionto the mysterious A problem[42]: the A modeis
with T in the underdopedregime, whereas the gap near the 1g 1g
c
a charge collective mode as a bound state of (quasiparticle)
nodal region may be identified as the superconductingorder
parameterinthecuprates[17–23]. Thisidentificationoffersa singletpairsoriginatingfromthefluctuating px(py)-wavesu-
perconductingorder.
naturalexplanationwhythe twodistinctenergyscalesin the
underdopedregimemergeintoonesingleenergyscaleinthe Second, is the pairing symmetry really of d + s-wave na-
3
if the stripe states (for reviews, see, e.g., Ref. [63–66]) were
nottouchedupon. Surprisingly,astripe-likestate,i.e.,astate
with charge and spin density wave order, coexisting with a
spin-tripletp (p )−wavesuperconductingstate,doesoccuras
x y
T agroundstateinthet−Jmodelfordopingsuptoδ≈0.18[9],
N
* with J/t = 0.4. Again, all symmetries, including the four-
T T
PG foldrotationandtranslationlatticesymmetry,SU(2)spinro-
tationandU(1)chargesymmetry,arespontaneouslybroken.
AF
Asimilarlineofreasoningyieldsthat,onlythechargedensity
T wave order survives thermal fluctuations, with the concomi-
C SC tantoccurrenceofthesoftmodes: theyarisefromtheSU(2)
symmetry breaking of the spin density wave order and the
δ spin-triplet p (p )−wave superconducting order, with twice
x y
the spin-triplet p (p )-wave superconducting energy gap as
x y
their characteristic energyscale. Althoughit remains uncer-
FIG.2: (coloronline)Aschematicphasediagramofthehole-doped tain whether or not such a commensurate stripe-like state is
high temperature cuprate superconductors plotted as a function of an artifact of our choice of the unit cell for the tensor net-
temperatureT andholedopingδ. Here, SC,PG,andAFstandfor work representation of quantum states, an important lesson
thesuperconducting, pseudogap, andanti-ferromagneticphases,re- wehavelearnedfromoursimulationisthat, thet− J model
spectively. T ,T∗,andT represent,respectively,thesuperconduct-
c N exhibitsastrongtendencytowardsastripestateintheunder-
ingtransitiontemperature,thepseudogaptemperature,andtheanti-
doped regime, consistent with the density matrix renormal-
ferromagnetic Ne´el temperature. In our scenario, the PG phase is
characterizedbyincoherentpreformedpairs,withapseudogapopen- izationgroup[67]foramorerealisticstripepatternatdoping
ing near the anti-nodal region, leaving the remnant gapless Fermi 1/8 and J/t = 0.35. From this we conclude that (i) static
arcsnear thenodes inthemomentum space. Inaddition, thefour- charge density wave order is compatible with the supercon-
foldrotationsymmetryandthetranslationsymmetryarebrokenon ductivity,soitspossibleroleisdeservedtobeexploredinthe
thesquarelattice. Superconducivityoccurs,whenlongrangephase
formationof the pseudogap; (ii) static spin density wave or-
coherencedevelopsatTc. derisdetrimentaltothed+s-wavesuperconductivity,because
nod+ s-wave superconductingcomponentcoexistswith the
charge and spin density order in the ground state; (iii) fluc-
ture? Many theoretical proposals, mainly based on the res- tuatingspindensitywaveorder,togetherwiththefluctuating
onating valence bond scenario [2], predicted a pure d-wave spin-triplet p (p )−wavesuperconductingorder,equallywell
x y
superconductivityinthecuprates[6,47–49]. Althoughavari- account for the Bose-Einstein condensation in our scenario.
etyofexperimentshavedemonstratedapredominantd-wave Therefore,the fluctuatingstripe orderis intrinsic to many, if
gap [50–52], strong evidence points to an admixture of an notall,familiesofthehightemperaturecupratesuperconduc-
s-wave component to the dominant d-wave superconductiv- tors.
ity in muon spin rotation studies [53, 54], electronic Raman
Fourth,doesourpredictionaboutthespontaneousbreaking
measurements[55], angle-resolvedelectron tunnelingexper-
of the four-fold rotation symmetry and the translation sym-
iments [56], and neutron crystal-field spectroscopy experi-
metryunderone-siteshifts in thepseudogapphase represent
ments [57]. In addition, a universal scaling relation of the
aphysicalreality? Inourscenario,thePGphaseischaracter-
superfluiddensity,ρ (0),atabsolutezero,withtheproductof
s ized by incoherentpreformedpairs, which occur in the anti-
the dc conductivity σ (T ), measured at T , and the transi-
dc c c nodal regime in the momentum space, leaving the remnant
tion temperature T , indicates that a pure d-wave supercon-
c gaplessFermiarcsinthenodalregime. Inaddition,thefour-
ductivityisrealizedinthecuprates[58]. Thisscalingrelation
foldrotationsymmetryandthetranslationsymmetryarebro-
may be regardedas a modified form of the Uemura relation
ken on the square lattice. In the superconductingphase, the
between the superfluid density ρ (0) and the transition tem-
s four-fold rotation symmetry breaking manifests itself in the
peratureT [59,60],whichworksreasonablywellintheun-
c admixture of an s-wave component to the dominant d-wave
derdoped regime. However, a significant deviation from the
state. Inthepseudophase,thebrokensymmetryprotectsthe
scalingrelationwassubsequentlyobserved[61],withasalient
spin-singletsoft mode that is unidirectionalas it arises from
featurethatthedeviationincreaseswithdoping. Thisfeature
the p (p )-wave superconductingfluctuations, as well as the
x y
stronglysuggeststhatthediscrepancyshouldbeaccountedfor
fluctuatingspindensityorderandpossiblystatic chargeden-
by removing an extra contribution from the s-wave compo- sity order. One may expect that measurable physical effects
nentinthecontextofthed+s-wavepairingsymmetry. This
arise from the coupling of electrons with the unidirectional
issue has been addressed recently [62], thus supporting our
spin-singletsoftmode. Indeed,alargein-planeanisotropyof
scenario. theNernsteffectinYBa Cu O wasreportedthatsetsinex-
2 3 y
Third, any theory regarding the underlying mechanism of actlyatthepseudogaptemperatureT∗[68]. Thisbrokenfour-
high temperature superconductivity would not be complete, fold rotation symmetry was also detected by resistivity [69]
4
andinelasticneutronscattering[70–72]atlowdoping,andby (2006).
scanningtunnelingspectroscopy[73,74]atlowtemperature, [9] S.-H.Li,Q.-Q.Shi,andH.-Q.Zhou,arXiv:1001.3343.
withoutaclearconnectiontothepseudogaptemperatureT∗. [10] J.M.KosterlitzandJ.D.Thouless,J.Phys.C6,1181(1973).
[11] P.C.Hohenberg,Phys.Rev.158,383(1967).
Fifth, what is the real bosonic glue for high temperature
[12] N.D.MerminandH.Wagner,Phys.Rev.Lett.17,1133(1966).
superconductivity in the cuprates? Many researchers have [13] H.Ding,T.Yokoya,J.C.Campuzano,T.Takahashi,M.Rande-
suggested various candidates, such as the spin resonance ria,M.R.Norman,T.Mochiku,K.Hadowaki,andJ.Giapintza-
mode [75, 76], the spin fluctuation spectrum [77–81], the kis,Nature382,51(1996).
phononspectrum[82,83],amoderesponsibleforthedipob- [14] A.G. Loeser, Z.-X. Shen, D.S. Dessau, D.S. Marshall, C.H.
Park,P.Fournier,andA.Kapitulnik,Science273,325(1996).
servedin angle-resolvedphotoemissionspectra[84], andthe
[15] Y.J.Uemura,Procedingsoftheinternationalworkshoponpo-
anti-ferromagneticfluctuations[85,86],asapossiblebosonic
larons and biporalons in high-T superconductors and related
c
glue. However, our scenario unveils that the spin resonance
materials, ed. E. Salje, A.S. Alexandrov, and Y. Liang, Cam-
and the Raman A1g modes play an analogous role to a ro- bridgeUniversityPress(1995),453.
toninthesuperfluid4He,incontrasttotheconventionallow- [16] V.J.EmeryandS.A.Kivelson,Nature374,434(1995).
temperature superconductorswith phonon-mediatedpairing. [17] K.Tanaka,etal.,Science314,1910(2006).
This strongly suggests that, there is no bosonic glue to pair [18] T. Kondo, T. Takeuchi, A. Kaminski, S. Tsuda, and S. Shin,
Phys.Rev.Lett.98,267004(2007).
electronsinthecuprates,asadvocatedbyAnderson[87].That
[19] W.S. Lee, I.M. Vishik, K. Tanaka, D.H. Lu, T. Sasagawa, N.
is, pairingis an emergentphenomena;itis resultedfromthe
Nagaosa, T.P.Devereaux, Z.Hussain, andZ.-X.Shen, Nature
many-body correlations in a doped Mott-Hubbard insulator:
450,81(2007).
boththed-waveandtheextendeds-wavepairingsarerealized [20] T.Yoshida,etal.,Phys.Rev.Lett.103,037004(2009).
toavoidstrongon-siteCoulombrepulsion. Here, weremark [21] Y. Gallais, A. Sacuto, P.Bourges, Y. Sidis, A. Forget, andD.
thatthespin resonanceandtheRaman A modeshavebeen Colson,Phys.Rev.Lett.88,177401(2002).
1g
suggestedbyUemura[88]toberotonanalogues,byinvoking [22] M.LeTacon,A.Sacuto,A.Georges,G.Kotliar,Y.Gallais,D.
Colson,andA.Forget,Nat.Phys.2,537(2006).
softmodesinthespinandchargechannelsinanincommen-
[23] W.Guyard,A.Sacuto,M.Cazayous,Y.Gallais,M.LeTacon,
suratestripestate(seealsoRef.[89]foranalternativeexpla-
D.Colson,andA.Forget,Phys.Rev.Lett.101,097003(2008).
nation). In this sense, our scenario unlocksthe secret of the
[24] W.Guyard,M.LeTacon,M.Cazayous,A.Sacuto,Y.Gallais,
yet-to-be-achievedsolid, as an analogueof the solid 4He, in A.Georges,D.Colson,andA.Forget,Phys.Rev.B77,024524
thecuprates. (2008).
[25] M.C. Boyer, W.D. Wise, K. Chatterjee, M. Yi, K. Kondo, T.
Inclosing,letusdiscussapossiblecandidateofthemodel
Takeuchi,H.Ikuta,andE.W.Hudson,Nat.Phys.3,802(2007).
systemthatisabletoreproduceallthefeaturesneededtoad-
[26] Y. Li, D.Munzar, A.V.Boris, P.Yordanov, J.Chaloupka, Th.
dress the high T problem, as mentionedat the beginningof
c Wilf, C.T. Lin, B. Keimer, and C. Bernhard, Phys. Rev. Lett.
thetext. Withthefactinmindthatthetwo-dimensionalt−J 100,177004(2008).
modeldoesexhibitad+s-wavesuperconductingstateanda [27] G.Deustcher,Nature397,410(1999).
stripe-like state in a certain doing range for a physically re- [28] C.Panagopoulos,J.R.Cooper,andT.Xiang,Phys.Rev.B57,
alistic parameter regime [9], we speculate that, most likely, 13422(1998).
an extension of the t− J model to include the next-nearest- [29] S.Hu¨fner, M.A.Hossain, A.Damascelli, andG.A.Sawatzky,
Rep.Prog.Phys.71,062501(2008).
neighborandthethird-nearest-neighborhoppingterms,which
[30] T.TimuskandB.Statt,Rep.Prog.Phys.62,61(1999).
areknowntobesignificantinthecuprates,willdothejob.
[31] M.R. Norman, D. Pines, and C. Kallin, Adv. Phys. 54, 715
We thank Sam Young Cho, Sheng-Hao Li, Bo Li, Qian- (2005).
Qian Shi, Hong-Lei Wang, Zu-Jian Ying and Jian-Hui Zhao [32] W.S.Lee,etal.,Nature450,81(2007).
[33] Z.A.Xu,etal.,Nature406,486(2000).
forusefulandstimulatingdiscussions.Thisworkissupported
[34] Y.Wang,etal.,Phys.Rev.Lett.95,247002(2005).
in partbythe NationalNaturalScienceFoundationofChina
[35] H.F.Fong,etal.,Phys.Rev.Lett.75,316(1995).
(GrantNos: 10774197and10874252).
[36] P.C.Dai,etal.,Phys.Rev.Lett.77,5425(1996).
[37] H.F.Fong,etal.,Phys.Rev.Lett.78,713(1997).
[38] H.F.Fong,etal.,Nature398,588(1999).
[39] H.He,etal.Phys.Rev.Lett.86,1610(2001).
[40] H.He,etal.Science295,1045(2002).
[1] J.G.BednorzandK.A.Mu¨ller,Z.Phys.B64,189(1986). [41] S.D.Wilson,etal.,Nature442,014523(2008).
[2] P.W.Anderson,Science235,1196(1987). [42] T.P.DevereauxandR.Hack,Rev.Mod.Phys.79,175(2007).
[3] Q.-Q. Shi, S.-H. Li, J.-H. Zhao, and H.-Q. Zhou, [43] S.L.Cooper,etal.,Phys.Rev.B38,11934(1988).
arXiv:0907.5520. [44] X.K.Chen,Phys.Rev.B48,10530(1993).
[4] J.Jordan,R.Oru´s,G.Vidal,F.Verstraete,andJ.I.Cirac,Phys. [45] M.LeTacon,etal.,Phys.Rev.B71,R100504(2005).
Rev.Lett.101,250602(2008). [46] T.P.Devereaux,etal.,Phys.Rev.Lett.72,396(1994).
[5] F.C.ZhangandT.M.Rice,Phys.Rev.B37,3759(1988). [47] C.Gros,Phys.Rev.B38,931(1988).
[6] F.C.Zhang,C.Gros,T.M.Rice,andH.Shiba,Supercond.Sci. [48] G.KotliarandJ.Liu,,Phys.Rev.B38,5142(1988).
Tech.1,36(1988). [49] Y. Suzumura, Y. Hasegawa, and H. Fukuyamsa, J. Phys.Soc.
[7] X.G.WenandP.A.Lee,Phys.Rev.Lett.76,503(1996). Jpn.57,2768(1988).
[8] P.A.Lee,N.Nagaosa,andX.-G.Wen,Rev.Mod.Phys.78,17 [50] D.J.Scalapino,Phys.Rep.250,330(1995).
5
[51] D.J.VanHarlingen,Rev.Mod.Phys.67,515(1995). [68] R.Daou,etal.,arXiv:0909.4430.
[52] C.C.TsueiandJ.R.Kirtley,Rev.Mod.Phys.72,969(2000). [69] Y.Ando,etal.,Phys.Rev.Lett.88,137005(2002).
[53] R.Khasanov,S.Stra¨ssle,D.DiCastro,T.Masui,S.Miyasaka, [70] C.Stock,etal.,Phys.Rev.B69,014502(2004).
S.Tajima,A.Bussmann-Holder,andH.Keller,Phys.Rev.Lett. [71] V.Hinkov,etal.,NaturePhys.3,780(2007).
99,237601(2007). [72] V.Hinkov,etal.,Science319,597(2008).
[54] R.Khasanov, A.Shengelaya,A.Maiuradze,F.LaMattina,A. [73] Y.Kohsaka,etal.,Science315,1380(2007).
Bussmann-Holder,H.Keller,andK.A.Mu¨ller,Phys.Rev.Lett. [74] Y.Kohsaka,etal.,Nature454,1072(2008).
98,057007(2007). [75] E.DemlerandS.-C.Zhang,Nature396,733(1998).
[55] T.Masui,M.Limonov,H.Uchiyama,S.Lee,S.Tajima,andA. [76] J.P.Carbotte,E.Schachinger,andD.N.Basov,Nature401,354
Yamanaka,Phys.Rev.B68,060506(2003). (1999).
[56] H.J.H. Smilde, A.A. Golubov, G. Ariando, G. Rijnders, J.M. [77] S.M.Hayden,etal.,Nature429,531(2004).
Dekkers, S. Harkema, D.H.A. Blank, H. Rogalla, and H. [78] J.Hwang,T.Timusk,andG.D.Gu,Nature427,714(2004).
Hilgenkamp,Phys.Rev.Lett.95,257001(2005). [79] T.Valla,ProceedingsofSPIE5932,593203(2005).
[57] A.Furrer,J.Supercond.Nov.Magn.21,1(2008). [80] M.R. Norman and A.V. Chubukov, Phys. Rev. B 73, 140501
[58] C.C.Homes,etal.,Nature430,539(2004). (2006).
[59] Y.J.Uemura,etal.,Phys.Rev.Lett.62,2317(1989). [81] T. Dahm, V. Hinkov, S.V. Borisenko, A.A. Kordyuk, V.B.
[60] Y.J.Uemura,etal.,Phys.Rev.Lett.66,2665(1991). Zabolotnyy,J.Fink,B.Bu¨chner,D.J.Scalapino,W.Hanke,and
[61] J.L. Tallon, J.R. Cooper, S.H. Naqib, and J.W. Loram, Phys. B.Keimer,arXiv:0812.3860.
Rev.B73,180504(R)(2006). [82] A.Lanzara,etal.,Nature412,510(2001).
[62] H.-Q. Zhou, Z.-J. Ying, M. Cuoco, and C. Noce, [83] X.J.Zhou,etal.,Nature423,398(2003).
arXiv:1002.xxxx. [84] J.C.Davis,etal.,Nature452,546(2006).
[63] S.A.Kivelson,etal.,Rev.Mod.Phys.75,1201(2003). [85] P.Monthoux,A.V.Balatsky,andD.Pines,Phys.Rev.Lett.67,
[64] M.Vojta,Adv.Phys.58,564(2009). 3448(1989).
[65] J.M.Tranquada,HandbookofHigh-TemperatureSuperconduc- [86] A.J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167
tivity: Theory and Experiment, eds. J.R. Schrieffer and J.S. (1990).
Brooks,Springer,Amsterdam(2007),257. [87] P.W.Anderson,Science316,1705(2007).
[66] J.Zaanen,PhysicaC317,217(1999). [88] Y.J.Uemura,J.Phys.Condens.Mat.16,S4515(2004).
[67] S.R. White and D.J. Scalapino, Phys. Rev. Lett. 80, 1272 [89] J.W.MeiandZ.Y.Weng,arXiv:0909.5567.
(1998).