Table Of Content1
AbelTest
ThistestonchemicalstabilitywasproposedbyAbelin1875.Thetest
parameterdeterminedisthetimeafterwhichamoistpotassiumiodide
starchpaperturnsvioletorbluewhenexposedtogasesevolvedbyone
gramoftheexplosiveat82.2°C(180°F).
In commercial nitroglycerine explosives, for example, this coloration
onlydevelopsafter10minor more.Inamore sensitivevariantofthe
method,Zinciodide–starchpaperisemployed.
TheAbeltestisstillusedinqualitycontrolofcommercialnitrocellulose,
butiscurrentlynolongeremployedinstabilitytestingofpropellants.
Acceptor1)
Empfängerladung;chargeréceptrice
Achargeofexplosivesorblastingagentreceivinganimpulsefroman
exploding→Donorcharge.
Acremite
ThisisthenamegivenbytheUSinventorAcretohismixtureofabout
94%ammoniumnitratewith6%fueloil.Thismixturewasatfirstpre-
paredinaprimitivemannerbytheusersthemselvestoobtainavery
cheapexplosiveforopenpitminingunderdryconditions.Like→ANFO,
thematerialhaswidelydisplacedconventionalcartridgedexplosives.
Actuator
Mechanicaldeviceoperatedbyasolidpropellant.
Adiabatic
Processesorphenomenaassumedtooccurinaclosedsystemwithout
energyexchangewiththesurroundings.
adiabaticflametemperature
The temperature obtained by thermodynamics calculations for the
productsofcombustionofenergeticmaterialsneglectingenergyloss
tothesurroundings.
1) Textquotedfromglossary.
Explosives,7.Edition,RudolfMeyer,JosefKöhler,andAxelHomburg.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.
AdobeCharge 2
isobaricadiabaticflametemperature
Adiabaticflame temperatureattained underconstant pressure condi-
tions.
isochoricadiabaticflametemperature
Adiabatic flame temperature attained under constant volume condi-
tions.
adiabatictemperature
Thetemperatureattainedbyasystemundergoingavolumeorpressure
changeinwhichnoheatentersorleavesthesystem.
AdobeCharge
Auflegerladung;pétardage
Synonymouswith→MudCap
ADR
Abbreviation for “Accord Européen Relatif au Transport des March-
andisesDangereusesparRoute”(EuropeanAgreementConcerningthe
internationalCarriageofDangerousGoodsbyRoad).Itisbasedonthe
RecommendationsontheTransportofDangerousGoodsModelRegu-
lations(UnitedNations).
Aerozin
Aliquidfuelforrocketenginesthatiscomposedof50%anhydroushy-
drazineand50%asym-dimethylhydrazine.
AGARD
Abbreviation for the NATO Advisory Group for Aeronautical Research
andDevelopment.
Airbag
Gasgenerator
Thebasicideaoftheairbagasapassiverestraintsysteminamotorve-
hiclewasalreadypatentedforthefirsttimein1951inGermany.How-
ever,ittook nearly20 years before developmentbegan on two basic
types–pyrotechnicandhybridgasgenerators.Bothtypesaremanufac-
turednearlyexclusivelyinseriesproductionandwereincludedincars
3 Airbag
Figure1 Sectionaldiagramofapyrotechnicalgasgeneratorforairbags.
startingin1975.Mainstreamapplicationsofairbagrestraintsystemsin
almosteverycarstartedin1990.
Nowadays four main types of gas generating principles are used for
airbag inflators in cars. Pyrotechnic gas generators inflate the bag by
gaseouscombustionproductsofpyrotechniccompositions.Hybridgas
generatorsarebasedonacombinationofpressurizedgasandpyrotech-
nic(heating) charge todeliverthe gas. Both typesare widelyusedin
driver, passenger, side and curtain airbag applications. So-called cold
gasgeneratorsutilizepressurizedheliumforbaginflationandareusu-
allyusedforkneeandsideairbagsystems.Thelatestdevelopmentin
gas generating principles uses a combustible mixture of pressurized
hydrogen,oxygenandinertgasbeingappliedfordriverandpassenger
applications.Hybridandpyrotechnicgasgeneratorsarethemostcom-
montypesusedandaredescribedindetailbelow.Theirconstructionis
shownschematicallyinFigures1and2.
Inthehybridsystemthepre-pressurizedgas(nitrogen,argon/helium)
is stored in pressure containers fitted with a burst disc. Opening this
membrane by pyrotechnic means allows the gas to flow out intothe
airbag.Thecoolingoftheexpandinggasiscompensatedorevenover-
compensatedbythepyrotechniccharge.Sincethetotalamountofpy-
rotechnicmixtureissmallinquantitativeterms,thecompulsorythresh-
oldvaluesofthetoxicimpuritiescontainedintheworkinggascanbe
adheredtorelativelyeasily.Thisfact,inadditiontotheidealtempera-
tureoftheworkinggas,isthemainadvantageofhybridgasgenerators.
Airbag 4
Figure2 Sectionaldiagramofahybridgasgeneratorforairbags.
Thedisadvantagesarethelargerweightcomparedtopyrotechnicgas
generators,themorecomplexproductiontechnologyneededandthe
subjectiontopressurevesselregulation.
Theuniquefeatureofalmostallpyrotechnicalgasgeneratorsisthecon-
centricassemblyofthreedifferentchamberswithdesignscorrespond-
ing to their pressure conditions and functions. The innermost cham-
ber containsthe booster unitconsisting of aplug,squiband booster
charge. An auto ignition charge is usually integrated in the booster
setup,whosetaskistoignitethepyrotechnicmixturewithoutelectric
current in case of high temperatures,e.g. in case of fire. Duringstan-
dardelectricalignitionthethinresistancewireoftheigniterisheated
andtheignitiontrainstarted.Theboosterchargeusuallyusedinearlier
times was boron/potassium nitrate. Nowadays pyrotechnic formula-
tionswithgoodignitionpropertiesareusedinpelletizedgraindesign
contributingnoticeablytotheoverallgasyieldofthegenerator.Thehot
gases and particles generatedby this charge enterthe concentrically
arrangedcombustionchamberandignitethepyrotechnicmaincharge.
Bothchambersaredesignedforhighpressuresupto60MPa.Thepy-
rotechnicmainchargeconsistsgenerallyofcompressedpelletswhich
5 Airbag
Table1 EffluentgaslimitsaccordingUSCAR-24regulation.
EffluentGas VehicleLevelLimit Driver-SideLimit
(ppm) (ppm)
Chlorine(Cl ) 1 0.25
2
Carbonmonoxide(CO) 461 115
Carbondioxide(CO ) 30000 7500
2
Phosgene(COCl ) 0.33 0.08
2
Nitricoxide(NO) 75 18.75
Nitrogendioxide(NO ) 5 1.25
2
Ammonia(NH ) 35 9
3
Hydrogenchloride(HCl) 5 1.25
Sulphurdioxide(SO ) 5 1.25
2
Hydrogensulfide(H S) 15 3.75
2
Benzene(C H ) 22.5 5.63
6 6
Hydrogencyanide(HCN) 4.7 1.18
Formaldehyde(HCHO) 1 0.25
generatetheworkinggasandslagresiduesbyacombustionprocess.
Theproductsleavethecombustionchamberthroughnozzlesanden-
terthe lowpressure regionofthe filtercompartment,where theslag
isremovedfromthegasflow.Thefiltercompartmentisequippedwith
varioussteelfiltersanddeflectorplates.Thegasthenflowsthroughthe
filtercompartmentnozzlesintothebag.
Thebasictaskofeachgasgeneratoristoprovidesufficientnontoxicgas
(seeTable1)withintherequiredtimeframeof11–30mstoinflatethe
airbagtothespecifiedpressure.Thefirstpyrotechnicmixtureusedin
airbaggasgeneratorswasbasedonsodiumazide.Duringcombustion,
sodiumazidereactswithoxidizingagents,whichbondchemicallythe
elementalsodiumasthenitrogenisreleased.Establishedoxidizerswere
alkaliandalkalineearthnitrates,metaloxides(e.g.CuO,Fe O ),metal
2 3
sulfides(MoS ) and sulfur.If necessaryslag forming agents(e.g. SiO ,
2 2
aluminosilicates)were also added.Advancesinenvironmental aware-
nessledconsequentlytothereplacementofsodiumazide,thoughpure
nitrogenasaworkinggaswasgeneratedbythiscomposition.Another
factortothedetrimentofsodiumazidewastherelativelowspecificgas
yieldandtheunsolveddisposalprocedureforthistypeofpyrotechnic
mixture.
With regard to azide-free gas mixtures, there have been numerous
patents and initial applications since the early 1990s. These new gas
mixtures generate more gas per gram (gas yields from gas mixtures
AirBlast 6
containing NaN : 0.30–0.35l/g) and thus enable smaller and to some
3
extentamorelightweightconstructionofthegasgenerators.
Theycanbeclassifiedintotwocategories:
1. High-nitrogen organic compounds(C, H,O, N)are combined with
inorganicoxidizers:
The fuels are, for example, 5-aminotetrazole, azodicarbonamide,
→Guanidinenitrate,→Nitroguanidine,dicyandiamide,→Triamino-
guanidinenitrateandsimilarcompounds,aswellassaltsof,forex-
ample, 5-nitrobarbituric acid, urea derivativesand also nitramines
andsimilarcompounds.Theoxidizersare,forexample,alkalioral-
kaline earth nitrates, →Ammoniumnitrate, alkali or alkaline earth
perchloratesandmetaloxides.
Gasyieldofthesemixtures:0.50–0.65l/g.
2. High-oxygen,nitrogen-freeorganiccompounds(C,H,O)areblended
with inorganic oxidizers.The fuelsused are, for example,tri or di-
carboxylicacids(e.g.citricacid,tartaricacid,fumaricacid)orsimilar
compounds.Theoxidizersusedareespeciallyperchloratesandchlo-
rateswithadditionalassistancefrommetaloxides.Thisenablesany
formationofNOxtobeexcluded.Gasyieldofthemixture:0.5–0.6l/g.
Thegasgeneratorformulationsareusuallymanufacturedbygrinding
andblendingtherawmaterials,whichafterapre-compactingstepare
pressedintopelletsordisksonrotarytablepresses.Somegasgenera-
torformulationsusingplastic(reactive)bindersaremanufacturedbyan
extrusionprocess.
AirBlast
Druckwelle;ondedechoc
Theairborneacousticorshockwavegeneratedbyanexplosion→De-
tonation,→FuelAirExplosives,→ThermobaricExplosives.
AirLoaders
Blasgeräte;chargeurspneumatiques
Airloadersserve tocharge prilled→ANFOblastingagentsintobore-
holes.Ifthefree-runningprillscannotbechargedbypouring,e.g.hor-
izontalboreholes,boreholeswithneglectableslopeorboreholeswith
smalldiameters,theycanbeintroducedbyairloaders.Thisisdoneby
loadingthechargeintoapressurizedvesselandapplyinganairpressure
ofabout0.4MPa;avalveatthelowestpointofthemachine,whichcan
becontrolledfromtheboreholetobefilled,leadstoalonghose;when
thevalveisopened,astreamofaircontainingtheexplosivechargein
suspensionissentthroughitintotheborehole.Otherportablemachines
workontheinjectorprinciple.
7 AkarditeII
AkarditeI
diphenylurea;Diphenylharnstoff;diphénylurée
colorlesscrystals(molecularweight:212.25g/mol)
empiricalformula:C H N O
energyofformation:13−11127.23kcal∕kg=−490.6kJ∕kg
enthalpyofformation:−138.2kcal∕kg=−578.2kJ∕kg
oxygenbalance:−233.7%
nitrogencontent:13.21%
density:1.276g∕cm3
Akardite I serves as a →Stabilizer for gunpowders, in particular for
→Double-BasePropellants.
Specifications
meltingpoint: atleast183°C=361°F
moisture: notmorethan0.2%
ashes: notmorethan0.1%
chlorides: notmorethan0.02%
pHvalue: atleast5.0
acid,0.1NNaOH∕100g: notmorethan2.0cm3
AkarditeII
methyldiphenylurea; Methyldiphenylharnstoff; N-méthyl-N′,N′-diphényl-
urée
colorlesscrystals
empiricalformula:C H N O
14 14 2
molecularweight:226.3g/mol
energyofformation:−90.5kcal∕kg=−378.5kJ∕kg
enthalpyofformation:−112.7kcal∕kg=−471.5kJ∕kg
oxygenbalance:−240.4%
nitrogencontent:12.38%
density:1.236g∕cm3
AkarditeIIisaneffective→Stabilizerfordouble-basegunpowders
AkarditeIII 8
Specifications
sameasforAkarditeI,
exceptmeltingpoint atleast170−172°C=338−342°F
AkarditeIII
ethyldiphenylurea;Ethyldiphenylharnstoff;N-éthyl-N′,N′-diphénylurée
colorlesscrystals
empiricalformula:C H N O
15 16 2
molecularweight:240.3g/mol
energyofformation:−128.5kcal∕kg=−537.7kJ∕kg
enthalpyofformation:−151.9kcal∕kg=−635.5kJ∕kg
oxygenbalance:−246.3%
nitrogencontent:11.65%
density:1.128g∕cm3
AkarditeIIIisaneffective→Stabilizerfordouble-basepropellants.Both
AkarditeIIandIIIaregelatinizersaswellas→Stabilizers.
Specifications
sameasforAkarditeI,
exceptmeltingpoint atleast89°C=192°F
Alex
Alexisan→aluminumpowderformedbyexplosionofelectricallyheated
aluminumwiresininertatmosphereswithparticlesizesbetween50and
200nm.Duetoapassivationlayerofthicknessbetween2and4nm,a
substantial numberof theparticlesare alreadyconvertedtoalumina,
theformationofwhichshouldbeavoidedbyinsitucoating.Inaddition
tothediffusioncontrolledoxidationatlowertemperatures,apartialoxi-
dationoftheparticlescanoccurbyafastchemicallycontrolledreaction.
Alexcanincreasetheburningrateofsolidcompositerocketpropellants
uptoafactoroftwo.Anincreaseofdetonationvelocityisnotconfirmed
butAlexmightimprove→airblastorfragmentvelocitiesofsomehigh
explosives,andviscosityincreasesinformulationswithliquidbinders.
Alginates
Saltsofalginicacidwhicharecapableofbinding200–300timestheir
ownvolumeofwater.Theyareaddedasswellingorgellingagentsto
9 Amatols
explosivemixturesinordertoimprovetheirresistancetomoistureand
to→Slurriestoincreaseviscosity.
AllFire
Mindestzündstrom;ampèrageminimed’amorcage
Minimumcurrentthatmustbeappliedtoanignitercircuitforreliable
ignitionoftheprimerchargewithoutregardtotimeofoperation.
AluminumPowder
Aluminiumpulver;poudred’aluminum
Aluminumpowderisfrequentlyaddedtoexplosivesandpropellantsto
improvetheirperformance.Theadditionofaluminumresultsinconsid-
erablegaininheatofexplosionbecauseofthehighheatofformationof
aluminia(1658kJ/mol,16260kJ/kg)leadingtohighertemperaturesof
thefumes.Aluminumnotreactedinthedetonationfrontmightbeox-
idizedbyatmosphericoxygentoinducepost-heatinginthefumezone
andtoincreasethe→airblastoreventoinitiateadelayedsecondary
explosion.
Widely used mixtures of explosives with aluminum powder include
→Ammonals,→DBX,→HBX-1,→Hexal,→Minex,→Minol,→Torpex,
→Trialenes,→Tritonal andHexotonal. Inaddition,underwaterexplo-
sivesoftencontainaluminumpowders.
The performance effect produced by aluminumpowder is frequently
utilizedin→Slurries,alsoin→CompositePropellants.
Importantcharacteristicsofaluminumpowdersareshapeandgrainsize
of the powder granules. Waxed and unwaxed qualitiesare marketed.
Propellantformulationsoftenprescribesystematicallyvariedgrainsizes
forobtainingoptimaldensities.
Amatex
Apourablemixtureoftrinitrotoluene,ammoniumnitrateandRDX.
Amatols
Pourablemixturesofammoniumnitrateandtrinitrotolueneofwidely
varying compositions (40 : 60,50 : 50, 80 : 20). The composition 80 :
20maybeloadedintogrenades,forexample,usingascrewpress(ex-
truder).
Ammonals 10
Ammonals
Compressibleorpourablemixturescontainingammoniumnitrateand
aluminumpowder;thepourablemixturescontain→TNT
AmmoniumAzide
Ammoniumazid;azotured’ammonium
NH N
4 3
colorlesscrystals
molecularweight:60.1g/mol
energyofformation:+499.0kcal∕kg=+2087.9kJ∕kg
enthalpyofformation:+459.6kcal∕kg=+1922.8kJ∕kg
oxygenbalance:−53.28%
nitrogencontent:93.23%
density:1.346g∕cm3
Ammoniumazideispreparedbyintroducingasolutionofammonium
chlorideandsodiumazideintodimethylformamideat100°C.Thesol-
ventisthendrawnoffinvacuum.Owingtoitshighvaporpressure,this
compoundhasnotyetfoundanypracticalapplication.
Vaporpressure:
Pressure Temperature
(mbar) (°C) (°F)
1.3 29.2 84.6
7 49.4 121.0
13 59.2 138.6
27 69.4 157.0
54 80.1 176.2
80 86.7 188.1
135 95.2 203.4
260 107.7 225.9
530 120.4 248.7
1010 133.8 272.8
AmmoniumChloride
Ammoniumchlorid;chlorured’ammonium
NH Cl
4
colorlesscrystals
molecularweight:53.49g/mol
Description:A charge of explosives or blasting agent receiving an impulse from an exploding .. Alex can increase the burning rate of solid composite rocket propellants .. very high and even exceeds Nitroglycol in certain aspects. ride. ,a s. BaCl. 2. ,n o t mo re than. 0.0075%. 0.0075%. 0.0075%. 0.0075%. –.