Table Of ContentOrigami3
Origami3
Third International Meeting
of Origami Science, Mathematics, and Education
Sponsored by OrigamiUSA
Thomas Hull, Editor
A K Peters
Natick, Massachusetts
Editorial, Sales, and Customer Service Office
A K Peters, Ltd.
63 South Avenue
Natick, MA  01760
www.akpeters.com
Copyright  ©  2002 by A K Peters, Ltd.
All rights reserved. No part of the material protected by this copyright notice may be reproduced
or utilized in any form, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without written permission from the copyright owner.
Library of Congress Cataloging-in-Publication Data
International Meeting of Origami Science, Math, and Education (3rd : 2001 : Asilomar, Calif.)
Origami3 : Third International Meeting of Origami Science, Math, and Education /
Thomas Hull, editor.
p. cm.
Includes index.
ISBN 1-56881-181-0 (pbk.)
 1. Origami--Mathematics--Congresses. 2. Origami in education--Congresses. I. Title:
Origami3. II. Title: Third: Third International Meeting of Origami Science, Math, and Education.
III. Hull, Thomas. IV. Title.
QA491 .I55 2001
736í.982--dc21
2002023871
Printed in Canada
06  05  04  03  02                                                                             10  9  8  7  6  5  4  3  2  1
Table of Contents
 
Preface  ix 
Part One: Mathematics of Origami  1 
Recent Results in Computational Origami 
Erik D. Demaine and Martin L. Demaine..............................................     3 
A Disk-Packing Algorithm for an Origami Magic Trick 
Marshall Bern, Erik Demaine, David Eppstein, and Barry Hayes . .    17 
The Combinatorics of Flat Folds: A Survey 
Thomas C. Hull.......................................................................................    29 
A Mathematical Model for Non-Flat Origami 
sarah-marie belcastro and Thomas C. Hull...........................................    39 
The Definition of Iso-Area Folding 
Jun Maekawa..........................................................................................    53 
The Geometry of Orizuru 
Toshikazu Kawasaki................................................................................    61 
V
vi  Table of Contents 
The Validity of the Orb, an Origami Model 
Jeannine Mosely   ..................................................................................    75 
Mathematical Origami: Another View of Alhazen's 
Optical Problem 
Roger C. Alperin.....................................................................................    83 
Just Like Young Gauss Playing with a Square: 
Folding the Regular 17-gon 
Robert Geretschläger..............................................................................    95 
Paper-Folding Constructions in Euclidean Geometry: 
An Exercise in Thrift 
Benedetto Scimemi..................................................................................107 
Part Two: Origami Science and Applications  119 
Computer Tools and Algorithms for Origami Tessellation 
Design 
Alex Bateman..........................................................................................121 
The Foldinator Modeler and Document Generator 
John Szinger   .........................................................................................129 
The Application of Origami Science to Map and Atlas Design 
Koryo Miura   ........................................................................................137 
Origami Pots 
Tomoko Fuse, Akira Nagashima, Yasuhiro Ohara 
and Hiroshi Okumura.............................................................................147 
Polypolyhedra in Origami 
Robert J. Lang.........................................................................................153 
Origami with Trigonometric Functions 
Miyuki Kawamura   ...............................................................................169
Table of Contents  vii 
A Study of Twist Boxes 
Noriko Nagata   ......................................................................................179 
To Fold or to Crumple? 
B. A. DiDonna   ......................................................................................187 
Folded Tubes as Compared to Kikko ("Tortoise-Shell") Bamboo 
Biruta Kresling.......................................................................................197 
Square Cycles: An Introduction to the Analysis of Flexagons 
Ethan Berkove and Jeffrey Dumont........................................................209 
Self-Assembling Global Shape Using Concepts from Origami 
Radhika Nagpal......................................................................................219 
Part Three: Origami in Education  233 
Applications of Origami to the Teaching of Sophisticated 
Communication Techniques 
Deborah Foreman-Takano......................................................................235 
Origami and the Adult ESL Learner 
Lillian Yee Ho.........................................................................................247 
Exploring the Possibilities of a Module 
Krystyna Burczyk and Wojciech Burczyk...............................................257 
Using Graphs to Color Origami Polyhedra 
Charlene Morrow...................................................................................269 
Circular Origami: A Survey of Recent Results 
Eva Knoll.................................................................................................283 
In Praise of the Papercup: Mathematics and Origami at 
the University 
Emma Frigerio........................................................................................291
viii  Table of Contents 
Using Triangular Boxes from Rectangular Paper to 
Enrich Trigonometry and Calculus 
V’Ann Cornelius and Arnold Tubis   .....................................................299 
Fold Paper and Enjoy Math: Origamics 
Kazuo Haga............................................................................................307 
Origami as a Model for Development in Organisms 
Norman Budnitz......................................................................................329 
Instances of Origami within Mathematics Content Texts for 
Preservice Elementary School Teachers 
Jack A. Carter and Beverly J. Ferrucci.................................................337 
Contributors  345 
Index  349
(cid:12)(cid:13)(cid:5)(cid:7)(cid:2)(cid:14)(cid:5)
It is with much excitement and pleasure that I write the preface to Origami(cid:1),
ProceedingsoftheThirdInternationalMeetingofOrigamiScience,Math,and
Education(3OSME).Asprogramorganizerofthisconferenceandeditorofthis
proceedings, this book symbolizes the completetion of three years of work.
The first such conference, held in Ferrara, Italyin December of 1989, was
titled The First International Meeting of Origami Science and Technology.
Humiaki Huzita of the University of Padova was the father of this historic
event. Therewereonly17talks,butthefoundationwaslaidforpeoplearound
the globe to share their interests and research on the scientific, mathematical,
and educational aspects of origami. The proceedings from the first meeting
were ground-breaking, being the first publication to collect and disseminate
paper-folding research. To this day, these proceedings are much sought-after.
The Second International Meeting of Origami Science and Scientific
Origami was held in Otsu, Japan in December of 1994; this was the first
such meeting that I was able to attend. I was very impressed with the va-
riety and scope of the talks, which covered everything from Miura’s uses of
origami in designing solar panel arrays to Yoshizawa’s views on origami art;
fromKawasaki’s work on abstract, high-dimensional flat-foldingtoKresling’s
studiesoforigamipatternsinnature. Thejuxtapositionofideasinscience,art,
education, and math made the Otsu meeting unique in the history of origami.
This meeting also gave birth to a wonderful proceedings book; the organizers
of the meeting and editors of the proceedings (Miura, Fuse, Kawasaki, and
Maekawa) should be commended for their outstanding achievement.
(cid:2)(cid:14)