Table Of ContentOnder Statistics
This Bin
WILEY SERIES IV MROBAMILITY AND STATISTICS
Esublabed by WALTER A. SUEWHTAHTand SAMUBL S. WILkS
said 1 Balding Not 4. ©. Cra, Nichols Fisker,
In lactone. Rasen Lote M Ayan, Dvd Son
(kbion Snith dal ie Pete
Leos RnctiVe farac £ Shuart Mater, ov Kendall
‘A compli fhe ies in his serie appears tthe end of thi oka
Order Statistics
Third Edition
HA. pavID
ot Sate Cats
Department of etter
‘ames
HN. NAGARAJA,
Bre Oo Sine Coeriy
Papa f Sie
Catunbue, OF
Gas
INTERSCIENCE
AJOVIN SILY 2 S08, INC. PUBLICATION.
se et ut tees acne eee
See ee ee ee oman
IST RGIaceemecmae
Lint etn ny ete pi ob hea hin
‘ety ris Nowy ay 2 soe anda yah
eaten ny es
iy of Cou Cats abit Dae
(Bar eabren eons
genoa
To Ruth—HAD
To my mother, Susheela—HNN
Contents
PREFACE
INTRODUCTION
LT The subject of onder sausitex
12. The scope and limits of this book
13 Notation
4 Byerises
BASIC DISTRIBUTION THEORY
2 Distribution of single andor statistic
2.2 Joint distribution af hwo oF more onder staistcs
23 Distribution of the range ened of ether systematic.
24 Onder statistics for a diserete parent
2S Conditional distributions, onder statistics as Markov
chain, and independence results
26 Related satstics
27 Exercises
EXPECTED VALUES AND MOMENTS
BL Baste foruuloe
42 Spaciat consinuots distributions
33° The discrete case
324 Recurrence relations
5 Rrercises
BOUNDS AND APPRUXIMATIONS FOR MOMENTS
‘OF ORDER STATISTICS
4.1 Introduction
42 Distribasion-free bounds for the moments of order
43
44
45
46
a7
statistics ond of the range
Bounds and appresimations by orthogonal inverse
expunsion
Stochastic orderings
Bounds forthe expected values of enter statistics in
erm of quantiles ofthe parent distraction
Apprasimations to momen in terms ofthe quantile
Fenelon and is derivaives
Exercises
‘THE NONIID CASE
31
$2
36
Introduction
Onder statistics for independent nonidentically
discribueed variates
Order staisties for dependent variates
Inequalities and recurrence relations—nam-HD cases
Ronnds for linear functians of under statistics and for
their expected values
Rxercises
FURTHER DISTRIBUTION THEORY
fa
62
63
64
65
66
Iravoduetion
Stadentication
Statitics expressible ax mums
Random division of un interval
Linear functions of ander statinion
Moving onder statisties
conrens
67 Charaterizations 1?
68 Concomizants of onder staistics yaa
69 Exercises 18
‘ORDER STATISTICS IN NONPARAMETRIC
INFERENCE 159
71 Distritusion free confidence intervals for quantiles 159
7.2 Distribution free totorance intorvats 164
7.3 Distribution free prediction intervals 167
74° Exercises 169
ORDER STATISTICS IN PARAMETRIC INFERENCE 171
81 Introduction and basic results 178
82 Information in onder statistics 180
83 Bootverap estimation of quanctes and of moments of
tarde statistics 183
84 Least-squares extimation of lovation and scale
parameters by onder statistics 185
5 Estimation of location and scale parameters for
censored data it
86 Life tening, with special emphasis on the expmentiat
distribution 204
87 Prediction of onder statistics 208
88 Robust extimation a
89° Brercises 223
SHORTCUT PROCEDURES 238
DL Imroducrion 239
22 Quick measures of tcation 2a
9.3 Range and mean range as measures oftispersion 242
94 Other quick measures of dispersion 248
25 Quick esimanes in bivariate samples 250
9.6 The sudensced range 258
97 Quick teas 2357
98 Ranbed-vet sampling 262
0
it
covrenns
wo
919
gat
92
O-staistcs and L-moments in date summertzatton
Probability plowing and tess of goodness of ft
Statistical quatiy coneot
Exercises
ASYMPTOTIC THEORY
Ir
402
103
joa
105
108
107
108
109
Introduction
Representations for the ceniral sample quantes
Asymptotic joint distribution of central quantiles
Optimal choice of order seatiticn ix large samples
The asympotc distribution ofthe extreme
‘The asympiotc joist disiribtation of extremes
Extreme-value thuory for dependent sequences
Asymprotic propertics of intermediate order siaristes
Asymptotic results for multivariate samples
10.10 Baercives
ASYMPTOTIC RESULTS FOR FUNCTIONS
OF ORDER STATISTICS
us
uz
3
ud
us
ué
m7
us
Introduction
Asympiotie distribution ofthe range, midrange, and
spacings
Limit distribution of the eimned mean
Asymptutic normality of linear functions of onder
Gptimat asymptonc estimation by order statisties
Estimarors of tai index and extreme quansites
Asymptotic theory of concomiants of order statistics
Exercives
APPENDIX: GLTDY. TO TABLES AND ALGORITHMS
REFERENC)
Bu
33
3S
323
323
ide
29
337
335
sar
35
350
385
367
451
Preface to Third Edition
Sse the pale io WE the one einnn 3 this Bode ath they an
sepleatons of onl watinies have realy expanded. this ion Chaps 2-9
eal with eit-snple theory, eth dvs uo ditbarion tars (Chapters 2-81
‘nd sata inteence ‘Chapter 7-9). Axympllie su e boat in Chagos 1D
sod IL representing a ouling in cover
Tribe spice previ ations te penetin esi ap op t-dae account of what
we aya ay he enue he suet of ede tation. Many special tpist
real sen op, fa or Uwe re ty erly pie on intact far ee
texteosive aveouts eis ‘heavier of refer hn tort fi) LADD i he
Second ws aur! 1500, al th in sto a Ee sina of & good mans
referages cited eae, Been so, we bad to omit a larger propoon cf elevant
refereaces dm bere, ging sume prelerencec papers ac previly memnored
Sn revew aide,
Taio ta nena ny asin capone wory al stasis
coer tan aon sapiens (Chee), Dillon ection are emerge
Dew: 2.6, Relotd sis. 44, Srochic cing 6 6. Moving order state
67, Ghasscofzatcas, 73. Disuibuion es predtionimervas: £2. Information
Fnandersati wen 83, Noopirapetimaten; 9.6, Steaua: ings 9. Ranked set
seeping: and 89. Oveatnon and £ monensin date summarcatun, Sectin 65
inetndos jr app ican redial ltr} Seton 96
bHoeinsleneeteatig