Table Of ContentSPRINGER BRIEFS IN
APPLIED SCIENCES AND TECHNOLOGY
David Bienvenido-Huertas
Carlos Rubio-Bellido
Optimization
of the Characterization
of the Thermal Properties
of the Building Envelope
Analysis
of the Characterization
of the Façades using
Artificial Intelligence
123
SpringerBriefs in Applied Sciences
and Technology
SpringerBriefs present concise summaries of cutting-edge research and practical
applicationsacrossawidespectrumoffields.Featuringcompactvolumesof50to
125pages,theseriescoversarangeofcontentfromprofessionaltoacademic.
Typicalpublicationscanbe:
(cid:129)
Atimelyreportofstate-of-theartmethods
(cid:129)
Anintroductiontooramanualfortheapplicationofmathematicalorcomputer
techniques
(cid:129)
Abridgebetweennewresearchresults,aspublishedinjournalarticles
(cid:129)
Asnapshotofahotoremergingtopic
(cid:129)
Anin-depthcasestudy
(cid:129)
Apresentationofcoreconceptsthatstudentsmustunderstandinordertomake
independentcontributions
SpringerBriefs are characterized by fast, global electronic dissemination,
standardpublishing contracts,standardized manuscript preparation and formatting
guidelines,andexpeditedproductionschedules.
On the one hand, SpringerBriefs in Applied Sciences and Technology are
devoted to the publication of fundamentals and applications within the different
classical engineering disciplines as well as in interdisciplinary fields that recently
emerged between these areas. On the other hand, as the boundary separating
fundamental research and applied technology is more and more dissolving, this
seriesisparticularlyopentotrans-disciplinarytopicsbetweenfundamentalscience
andengineering.
IndexedbyEI-Compendex,SCOPUSandSpringerlink.
Moreinformationaboutthisseriesathttp://www.springer.com/series/8884
·
David Bienvenido-Huertas Carlos Rubio-Bellido
Optimization
of the Characterization
of the Thermal Properties
of the Building Envelope
Analysis of the Characterization
of the Façades using Artificial Intelligence
DavidBienvenido-Huertas CarlosRubio-Bellido
HigherTechnicalSchoolofBuilding HigherTechnicalSchoolofBuilding
Engineering Engineering
UniversityofSeville UniversityofSeville
Seville,Spain Seville,Spain
ISSN2191-530X ISSN2191-5318 (electronic)
SpringerBriefsinAppliedSciences andTechnology
ISBN978-3-030-63628-9 ISBN978-3-030-63629-6 (eBook)
https://doi.org/10.1007/978-3-030-63629-6
©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2021
Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether
thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse
ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and
transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar
ordissimilarmethodologynowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook
arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor
theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany
errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional
claimsinpublishedmapsandinstitutionalaffiliations.
ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG
Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
Contents
1 TheInfluenceoftheEnvelopeThermalPropertiesonBuilding
EnergyPerformance ............................................. 1
1.1 LowCarbonEconomyGoals .................................. 1
1.2 BuildingEnergyEfficiency ................................... 2
1.3 InfluenceoftheEnvelopeThermalProperties .................... 4
1.4 RegulatoryFrameworkforThermalProperties ................... 8
References ...................................................... 10
2 Methods to Assess the Thermal Properties of the Building
Envelope ....................................................... 13
2.1 Introduction ................................................ 13
2.2 MethodstoAssessStaticThermalProperties .................... 14
2.2.1 TheoreticalMethods ................................... 14
2.2.2 ExperimentalMethods ................................. 17
2.3 MethodstoAssessPeriodicThermalProperties .................. 23
References ...................................................... 26
3 MethodologicalFrameworkofArtificialIntelligenceAlgorithms
andGenerationoftheDataset .................................... 31
3.1 Introduction ................................................ 31
3.2 ArtificialIntelligenceAlgorithms .............................. 32
3.2.1 ArtificialNeuralNetworks ............................. 32
3.2.2 RandomForest ....................................... 35
3.3 DatasetDesign .............................................. 37
3.4 TrainingandTestingProcesses ................................ 41
References ...................................................... 44
4 Estimation of Stationary Thermal Properties with Artificial
Intelligence ..................................................... 47
4.1 Introduction ................................................ 47
4.2 EstimationPerformanceoftheStationaryThermalProperties
ObtainedwithArtificialIntelligence ............................ 49
v
vi Contents
4.2.1 ArtificialNeuralNetwork .............................. 49
4.2.2 RandomForest ....................................... 51
4.3 ComparativeAnalysis ........................................ 53
5 Estimating Periodic Thermal Properties with Artificial
Intelligence ..................................................... 55
5.1 Introduction ................................................ 55
5.2 EstimationPerformanceofthePeriodicThermalProperties
ObtainedwithArtificialIntelligence ............................ 56
5.2.1 ArtificialNeuralNetwork .............................. 56
5.2.2 RandomForest ....................................... 59
5.3 ComparativeAnalysis ........................................ 66
6 Analysing with Artificial Intelligence Other Approaches
to Experimental Thermal Characterization in the Existing
Buildings ....................................................... 67
6.1 Introduction ................................................ 67
6.2 Elimination of Errors in the Thermometric Method
withMultilayerPerceptrons ................................... 67
6.3 Determination of the Constructive Period of the Building
withMonitoredData ......................................... 70
Chapter 1
The Influence of the Envelope Thermal
Properties on Building Energy
Performance
1.1 LowCarbonEconomyGoals
From ancient times, human beings have taken advantage of natural resources as
muchaspossiblefortheirownbenefit,althoughthatadvantageislimitedinorderto
guaranteetheenvironmentsustainability.AftertheIndustrialRevolution,however,
thebalancebetweenhumanbeingsandnaturewasbroken,mainlyduetotheneed
of society to meet its growing production by excessively exploiting the natural
resources of the biosphere [1]. The interaction of society with the environment is
negativelyinfluencingnature,leadingtoclimatechange,theacidificationofoceans,
andtheextinctionofspecies[2].Inaddition,socialanddemographicaspectsarealso
affected,suchasenvironmentalrefugees.For40years,thecapacityofearthresources
hasbeenexceeded[2],thusreflectingtheunsustainabilityofthesociety’slifesystem
fromthetwenty-firstcentury.Forthisreason,themajoreconomicpowersareincreas-
inglyworriedabouttheexcessivedependenceoffossilfuelsastheseresourcesare
imported from countries with an unstable political activity. This fact implies to be
subjectedtopotentialeconomiccrisis,suchastheoilcrisisof1973and1979.
Inaddition,thepossibleclimateevolutionscenariosthroughoutthetwenty-first
centuryarenotencouraging.AccordingtotheIntergovernmentalPanelonClimate
Change[3],thosescenarios(i.e.scenariosB1,A1T,B2,A1B,A2,andA1FI)claim
thatthetemperaturewillincreasebetween1.1°Cand6.4°Cbytheendofthetwenty-
first century, and the sea level will increase between 18 and 59 cm in comparison
withthevaluesfromtheendofthetwentiethcentury.
One of the main reasons is the greenhouse gases continuously emitted into the
atmosphere. Many sectors have high percentages of greenhouse gas emissions. In
thisregard,thedataincludedinthereportentitledUnitedinScience[4],publishedin
theUNClimateActionSummit2019,presentaworryingtrend:anannualincreaseof
1%inCO emissions,apredominanceoffossilfuelconsumption(despiterenewable
2
energiesaremoreandmoreused),andanincreaseinCO ,CH ,andN Oof146%,
2 4 2
©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2021 1
D.Bienvenido-HuertasandC.Rubio-Bellido,OptimizationoftheCharacterization
oftheThermalPropertiesoftheBuildingEnvelope,SpringerBriefsinApplied
SciencesandTechnology,https://doi.org/10.1007/978-3-030-63629-6_1
2 1 TheInfluenceoftheEnvelopeThermalPropertiesonBuilding…
275%,and122%,respectively,incomparisonwithpreindustrialperiods(i.e.before
1750).
Internationalbodiesarethereforefocusedonsettinggoalsfortheworldpopulation
toachieveamoresustainabledevelopmenttoprotecttheenvironment.Anexample
of this new society’s trend is the international congresses and conventions taken
placeinthelast25years.Thesecongressesandconventionsledtotreaties,suchas
the Kyoto Protocol and the Paris Agreement. The latter defined demanding goals
tomaintainclimateconditionsagainsttheprogressivetemperatureincrease.Oneof
thegoalswasmaintainingthetemperatureincreasebelow2°Cincomparisonwith
preindustrialperiods.However,thisistheworstscenarioastheagreementurgesto
achieveanincreaseofonly1.5°C.
Moreover,thisagreementforcesthe195countriestodevelopstrategiesandpoli-
ciesfocusedonimprovingtheefficiencyandsustainabilityofproductiveprocesses.
Thus,thesecountriesestablisheddemandinggoalstoachievealow-carboneconomy
by2050.
TheEuropeanUnion’sroadmaptowardsalow-carboneconomyaimstoreducing
thegreenhousegasemissionsproducedbyEuropeancountries[5].Thegoalinthe
firststagewastoreducetheseemissionsby20%by2020,butthisgoalisaninterme-
diatestagewithinthefinalgoal,thatis,reducinggreenhousegasemissionsbetween
80 and 90% by 2050. For this purpose, goals based on reducing greenhouse gas
emissionsaresetinallmajorsectors,includingtheresidentialsector.
1.2 BuildingEnergyEfficiency
Constructionisamongthemostsignificantactivitiescarriedoutbyhumanbeingsasit
isoneofthemostcomplexsectorsthatgreatlyimpactssociety.Inaddition,thissector
is continuously developed. Users’ activities in residential buildings are significant
inconstructionaspeoplespendmostoftheirtimeinthem,andconsequentlyusers’
behaviourpatternscouldsignificantlyaffecttheenergyuse[6,7].
Approximately 40% of the total energy consumption from human activities is
relatedtothebuildingsector[8],whichgenerates38%ofgreenhousegasemissions
[9].In2010,thetotalenergyconsumptionofthebuildingsectorwas23.7PWh,and
itisestimatedthatthisconsumptioncouldreach38.4PWhby2040[10].
Thisenergyconsumptionismainlyusedforheatingandair-conditioningsystems,
water warming, electrical household appliances, and lighting systems. However,
severalstudieshaveemphasizedthatthemainsourceofenergyconsumptioninthese
buildingsistheconsumptiongeneratedbyheating,ventilation,andair-conditioning
(HVAC)systems[11,12].
Although the energy consumption could vary due to factors related to building
properties[13],socioeconomicfactorscouldalsoinfluencetheenergyconsumption
ofdwellings[14,15].Thus,therelationshipbetweenthebuildingenergydemand,
users’behaviourpatterns,andsocialandeconomicfactorscouldsignificantlyinflu-
encethistypeofconsumption.Thisaspectbecomesmoreimportantiftheeffectof
1.2 BuildingEnergyEfficiency 3
Fig.1.1 FinalenergyconsumptioninEuropebysectors.DatausedarethosefromtheEuropean
environmentagency[16]
dwellingperformanceisconsideredataglobalscale[13]asminorvariationscould
implysignificantsavings.
Thedeficientperformanceisreflectedinthehighenergyconsumptionrecorded
inbuildingsinrecentyears.IntheEuropeanUnion,residentialbuildingsrepresented
25.7%ofthetotalprimaryenergyconsumptionin2016[16].Since1990,thetotal
energy consumption annually increases 1% with a peak of 2.5% in relation to the
electricaldemand[16](Fig.1.1),thusshowingtheprogressiveenergyperformance
lossoftheEuropeanbuildingstock.
Most energy consumed in the use phase of residential buildings is from non-
renewableresources,sotheenergyconsumptionintheexistingbuildingstockshould
bereduced.Withinthiscontext,theinternationalcommunityhasintensifieditsefforts
toreducetheincreasesofCO emissionsandtheenergyconsumptionrelatedtothe
2
buildingsector.
Thus,themajorframeworktoachievealow-carbonresidentialsectoristhestate
regulation on building energy efficiency. European buildings should reduce their
greenhouse gas emissions by 90% by 2050 [5], so a larger number of nearly zero
energybuildings(nZEB)isrequired.AccordingtotheDirective2010/31/UE(Euro-
pean Union 2010), all state members should include in their state regulations the
obligatory nature that new buildings or buildings to be restored are nZEB in the
followingdates:
(cid:129)
After31December2018inpublicbuildings.
(cid:129)
After31December2020inallnewbuildings.
Nevertheless, the limitations for their application in warm climates is a chal-
lengeforthescientificandtechnologicalcommunity[17].Attiaetal.[18]presented