Table Of ContentOptical Fiber Sensors for the Next
Generation of Rehabilitation Robotics
This page intentionally left blank
Optical Fiber Sensors
for the Next
Generation of
Rehabilitation Robotics
Arnaldo Leal-Junior
MechanicalEngineeringDepartment
FederalUniversityofEspiritoSanto
Vitória,Brazil
Anselmo Frizera-Neto
ElectricalEngineeringDepartment
FederalUniversityofEspiritoSanto
Vitória,Brazil
AcademicPressisanimprintofElsevier
125LondonWall,LondonEC2Y5AS,UnitedKingdom
525BStreet,Suite1650,SanDiego,CA92101,UnitedStates
50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom
Copyright©2022ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,
electronicormechanical,includingphotocopying,recording,oranyinformationstorageand
retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek
permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements
withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,
canbefoundatourwebsite:www.elsevier.com/permissions.
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe
Publisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand
experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or
medicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein
evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.In
usingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof
others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,
assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts
liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products,
instructions,orideascontainedinthematerialherein.
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN:978-0-323-85952-3
ForinformationonallAcademicPresspublications
visitourwebsiteathttps://www.elsevier.com/books-and-journals
Publisher:MaraConner
AcquisitionsEditor:SonniniR.Yura
EditorialProjectManager:IsabellaC.Silva
ProductionProjectManager:SojanP.Pazhayattil
Designer:VictoriaPearson
TypesetbyVTeX
Contents
Preface ix
Part I
Introduction to soft robotics and rehabilitation
systems
1. Introductionandoverviewofwearabletechnologies
1.1 Motivation 3
1.2 Wearableroboticsandassistivedevices 10
1.3 Wearablesensorsandmonitoringdevices 14
1.4 Outlineofthebook 18
References 21
2. Softwearablerobots
2.1 Softrobots:definitionsand(bio)medicalapplications 27
2.2 Softrobotsforrehabilitationandfunctionalcompensation 30
2.3 Human-in-the-loopdesignofsoftstructuresandhealthcare
systems 34
2.3.1 Human-in-the-loopsystems 34
2.3.2 Human-in-the-loopapplicationsandcurrenttrends 37
2.3.3 Human-in-the-loopdesigninsoftwearablerobots 39
2.4 Currenttrendsandfutureapproachesinwearablesoftrobots 43
References 46
3. Gaitanalysis:overview,trends,andchallenges
3.1 Humangait 53
3.2 Gaitcycle:definitionsandphases 56
3.2.1 Kinematicsanddynamicsofhumangait 57
3.3 Gaitanalysissystems:fixedsystemsandwearablesensors 58
References 61
v
vi Contents
Part II
Introduction to optical fiber sensing
4. Opticalfiberfundamentsandoverview
4.1 Historicalperspective 67
4.2 Lightpropagationinopticalwaveguides 69
4.3 Opticalfiberpropertiesandtypes 72
4.4 Passiveandactivecomponentsinopticalfibersystems 76
4.4.1 Lightsources 77
4.4.2 Photodetectors 77
4.4.3 Opticalcouplers 79
4.4.4 Opticalcirculators 80
4.4.5 Spectrometersandopticalspectrumanalyzers 81
4.5 Opticalfiberfabricationandconnectionmethods 83
4.5.1 Fabricationmethods 84
4.5.2 Opticalfiberconnectorizationapproaches 87
References 89
5. Opticalfibermaterials
5.1 Opticallytransparentmaterials 93
5.2 Viscoelasticityoverview 96
5.3 Dynamicmechanicalanalysisinpolymeropticalfibers 101
5.3.1 DMAonPMMAsolidcorePOF 103
5.3.2 DynamiccharacterizationofCYTOPfibers 107
5.4 Influenceofopticalfibertreatmentsonpolymerproperties 111
References 115
6. Opticalfibersensingtechnologies
6.1 Intensityvariationsensors 119
6.1.1 Macrobendingsensors 120
6.1.2 Lightcoupling-basedsensors 125
6.1.3 Multiplexedintensityvariationsensors 127
6.2 Interferometers 129
6.3 Gratings-basedsensors 133
6.4 Compensationtechniquesandcross-sensitivitymitigationin
opticalfibersensors 138
References 143
Part III
Optical fiber sensors in rehabilitation systems
7. Wearablerobotsinstrumentation
7.1 Opticalfibersensorsonexoskeleton’sinstrumentation 151
Contents vii
7.2 Exoskeleton’sangleassessmentapplicationswithintensity
variationsensors 152
7.2.1 Casestudy:activelowerlimborthosisforrehabilitation
(ALLOR) 156
7.2.2 Casestudy:modularexoskeleton 157
7.3 Human-robotinteractionforcesassessmentwithFiberBragg
Gratings 160
7.4 Interactionforcesandmicroclimateassessmentwithintensity
variationsensors 166
References 172
8. Smartstructuresandtextilesforgaitanalysis
8.1 Opticalfibersensorsforkinematicparametersassessment 175
8.1.1 Intensityvariation-basedsensorsforjointangle
assessment 175
8.1.2 FiberBragggratingssensorswithtunablefilter
interrogationforjointangleassessment 178
8.2 Instrumentedinsoleforplantarpressuredistributionand
groundreactionforcesevaluation 183
8.2.1 FiberBragggratinginsoles 183
8.2.2 Multiplexedintensityvariation-basedsensorsforsmart
insoles 188
8.3 Spatiotemporalparametersestimationusingintegratedoptical
fibersensors 198
References 199
9. Softroboticsandcompliantactuatorsinstrumentation
9.1 Serieselasticactuatorsinstrumentation 201
9.1.1 Torquemeasurementwithintensityvariationsensors 202
9.1.2 Torquemeasurementwithintensityvariationsensors 206
9.2 Tendon-drivenactuatorsinstrumentation 212
9.2.1 Artificialtendoninstrumentationwithhighlyflexible
opticalfibers 213
References 217
Part IV
Case studies and additional applications
10. Wearablemultifunctionalsmarttextiles
10.1 Opticalfiberembedded-textilesforphysiologicalparameters
monitoring 223
10.1.1 Breathandheartratesmonitoring 224
10.1.2 Bodytemperatureassessment 232
10.2 Smarttextileformultiparametersensingandactivities
monitoring 234
viii Contents
10.3 Opticalfiber-embeddedsmartclothingformechanical
perturbationandphysicalinteractiondetection 239
References 241
11. Smartwalker’sinstrumentationanddevelopmentwith
compliantopticalfibersensors
11.1 Smartwalkers’technologyoverview 245
11.2 Smartwalkerembeddedsensorsforphysiologicalparameters
assessment 247
11.2.1 Systemdescription 247
11.2.2 Preliminaryvalidation 250
11.2.3 Experimentalvalidation 252
11.3 Multiparameterquasidistributedsensinginasmartwalker
structure 252
11.3.1 Experimentalvalidation 252
11.3.2 Experimentalvalidation 256
References 260
12. Opticalfibersensorsapplicationsforhumanhealth
12.1 Roboticsurgery 263
12.2 Biosensors 269
12.2.1 Introductiontobiosensing 269
12.2.2 Backgroundonopticalfiberbiosensingworking
principles 271
12.2.3 Biofunctionalizationstrategiesforfiberimmunosensors 276
12.2.4 Immunosensingapplicationsinmedicalbiomarkers
detection 279
References 282
13. Conclusionsandoutlook
13.1 Summary 287
13.2 Finalremarksandoutlook 290
Index 293
Preface
Theadvancesinmedicineandphysicaltherapyinconjunctionwithnewdevel-
opments of mechatronic devices with a higher level of controllability enabled
the development of assistive robotic devices, which are explored by many re-
search groups around the world. Concurrently, there is the development and
widespread of optical fiber technology, which is increasingly used as sensors
devices. The optical fiber sensors characteristics are well aligned with the re-
quirementsofroboticinstrumentation,especiallytheoneswithelectricmotors,
commonly used in wearable robots: Optical fiber sensors are immune to elec-
tromagneticperturbationsofferingprecisemeasurementsinnoiseenvironments.
In addition, the flexibility of optical fibers is also aligned with the new trends
insoftandflexibleroboticsystems,wherethesensorscanbeembeddedinthe
robot’sstructureortheycanbeplacedonwearabledevicesforpatientmonitor-
ing.Yearsago,alloftheseadvancesresultedinanewresearchdirection,where
theopticalfibersensorswereusedontherobots’instrumentationtoextendtheir
controlcapabilitiesbymeasuringparametersthatwerenotcommonlymeasured
withconventionalelectromechanicalsensors.
The results of years of research in robotics and optical fiber sensors in a
jointeffortoftheGraduatePrograminElectricalEngineeringandMechanical
EngineeringDepartmentoftheFederalUniversityofEspiritoSanto(UFES)are
summarized in this book. The aim of this book is to provide a comprehensive
understanding on this new research topic and its underlying theory and prin-
ciples. This book was proposed and conceived under the assumption that the
next generation of wearable robots and devices not only will include the soft
structureandcompliantactuators,butalsothenewopticalfibersensorsembed-
dedinthe robots’structure andactuationunits.We dividedthebookintofour
parts. In the first part of this book, the developments in wearable robots and
assistive devices as well as human-in-the-loop design and the recent develop-
mentsonsoftroboticsarediscussed.Inthesecondpart,thefocusisshiftedto
opticalfibersincludingthepresentationofanoverview,themaincomponents,
andcharacteristicsofanopticalfiber-baseddetectionsystemandthematerials
commonlyusedonthedevelopmentofopticalsensors.Moreover,opticalfiber
sensorsapproachesarepresented.Thethirdpartpresentstheopticalfiber-based
instrumentation systems in wearable robots and assistive devices, resulting in
ix