Table Of ContentOn Some Applications
of Diophantine
Approximations
(a translation of Carl Ludwig Siegel’s U¨ ber einige
AnwendungendiophantischerApproximationen
by Clemens Fuchs)
edited by
Umberto Zannier
with a commentary and the article Integral
points on curves: Siegel’s theorem after Siegel’s
proof
EDIZIONI
DELLA
NORMALE
2
QUADERNI
MONOGRAPHS
UmbertoZannier
ScuolaNormaleSuperiore
PiazzadeiCavalieri,7
56126Pisa,Italia
ClemensFuchs
UniversityofSalzburg
DepartmentofMathematics
Hellbrunnerstr.34/I
5020Salzburg,Austria
OnSomeApplicationsofDiophantineApproximations
On Some Applications
of Diophantine
Approximations
(a translation of Carl Ludwig Siegel’s U¨ber einige
AnwendungendiophantischerApproximationen
by(cid:0)Clemens Fuchs)
edited by
Umberto Zannier
with a commentary and the article Integral
points on curves: Siegel’s theorem after Siegel’s
proof by Clemens Fuchs and Umberto Zannier
(cid:2)c 2014ScuolaNormaleSuperiorePisa
ISBN978-88-7642-519-6
ISBN978-88-7642-520-2 (eBook)
Contents
Preface vii
C(cid:76)(cid:69)(cid:77)(cid:69)(cid:78)(cid:83)(cid:0)(cid:38)(cid:85)(cid:67)(cid:72)(cid:83)
OnsomeapplicationsofDiophantineapproximations 1
1 PartI:Ontranscendentalnumbers 8
1 Toolsfromcomplexanalysis . . . . . . . . . . . . . . . . . . . 8
2 Toolsfromarithmetic . . . . . . . . . . . . . . . . . . . . . . . 19
3 Thetranscendenceof J (ξ) . . . . . . . . . . . . . . . . . . . . 27
0
4 Furtherapplicationsofthemethod . . . . . . . . . . . . . . . . 31
2 PartII:OnDiophantineequations 47
1 Equationsofgenus0 . . . . . . . . . . . . . . . . . . . . . . . 52
2 Idealsinfunctionfieldsandnumberfields . . . . . . . . . . . . 54
3 Equationsofgenus1 . . . . . . . . . . . . . . . . . . . . . . . 59
4 AuxiliarymeansfromthetheoryofABELfunctions . . . . . . . 61
5 Equationsofarbitrarypositivegenus . . . . . . . . . . . . . . . 65
6 Anapplicationoftheapproximationmethod . . . . . . . . . . . 68
7 Cubicformswithpositivediscriminant . . . . . . . . . . . . . . 74
C(cid:65)(cid:82)(cid:76)L(cid:14)(cid:0)Siegel
U¨bereinigeAnwendungendiophantischerApproximationen 81
ClemensFuchsandUmberto Zannier
Integralpointsoncurves:
Siegel’stheoremafterSiegel’sproof 139
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
2 SomedevelopmentsafterSiegel’sproof . . . . . . . . . . . . . 139
3 Siegel’sTheoremandsomepreliminaries . . . . . . . . . . . . 144
4 ThreeargumentsforSiegel’sTheorem . . . . . . . . . . . . . . 145
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Preface
In1929CarlLudwigSiegelpublishedthepaperU¨bereinigeAnwendungendi-
ophantischerApproximationen(appearedinAbh. Preuß. Akad. Wissen. Phys.-
math.Klasse,1929andreproducedinSiegel’scollectedpapersGes.Abh.Bd.I,
Springer-Verlag1966,209-266). ItwasdevotedtoDiophantineApproximation
andapplicationsofit,andbecamealandmarkwork,alsoconcerninganumber
of related subjects. Siegel’s paper was written in German and this volume is
devotedtoatranslationofitintoEnglish(includingalsotheoriginalversionin
German).
Siegel’s paper introduced simultaneously many new methods and ideas. To
commentonthisinsomedetailwouldoccupyafurtherpaper(orseveralpapers),
and here we just limit ourselves to a brief discussion. The paper is, roughly,
dividedintotwoparts:
(a)Thefirstpartwasdevotedtoprovingtranscendenceofnumbersobtained
asvalues(atalgebraicpoints)ofcertainspecialfunctions(includinghypergeo-
metric functions and Bessel functions). In this realm, Siegel’s paper system-
atically developed ideas introduced originally by Hermite in dealing with the
exponential function; a main point is to approximate with rational functions
a function expressed by a power series, and to draw by specialisation numer-
icalapproximationstoitsvalues. Thesenumericalapproximations, ifaccurate
enough,allow,throughstandardcomparisonestimates,toprovetheirrationality
(ortranscendence)ofthevaluesofthefunctioninquestion.
Siegelexploitedandextendedthisprincipleingreatdepth, obtainingresults
whichwere(andare)spectacularlygeneralinthetopic,especiallyatthattime.
Probablythiswasthefirstpapergivingtotranscendencetheorysomecoher-
ence.
Thisstudyalsointroducedrelatedconcepts,liketheoneof‘E-function’and
of‘G-function’(cf.[1,8]),andlednaturallytoalgebraicalandarithmeticalstud-
ies on systems of linear differential equations (with polynomial coefficients),
whicheventuallyinspiredseveraldifferentdirectionsofresearch,allimportant
anddeep.
(b) The second part was devoted to diophantine equations, more precisely
to the study of integral points o algebraic curves. In this realm too, the paper
viii Preface
introduced several further new ideas, also with respect to previous important
papersofSiegel.1 Someinstancesforthenewideascontainedinthesecondpart
are:
– The paper used the embedding of a curve (of positive genus) into its Jac-
obian, and the finite generation of the rational points in this last variety
(whichhadbeenprovedbyL.J.MordellforellipticcurvesandbyA.Weil
ingeneral); thisprovidedabasicinstanceoftheintimateconnectionofdi-
ophantine analysis with algebraic geometry and complex analysis, which
becameunavoidablesincethattime.
– It used and developed the concept of ‘height’ of algebraic points and its
propertiesrelatedtorationaltransformations,especiallyonalgebraiccurves;
this went sometimes beyond results by A. Weil, who had introduced the
conceptandhadalsopointedouttransformationproperties.
Again,thisrepresentedoneoftheveryfirstexamplesofhowthelinkbetween
arithmetic and geometry can be used most efficiently, leading to profound
results.
– Itexploitedtoanewextentthediophantineapproximationtoalgebraicnum-
bers.ThishadbeenusedbyA.Thuearound1909inthecontextofthespecial
curvesdefinedbytheso-called‘Thueequations’. Forgeneralcurves,thedi-
ophantineapproximationdrawnfromintegersolutionsisnotsharpenoughto
providedirectlythesoughtinformation,henceSiegelhadtogomuchdeeper
intothis. Bytakingcoversofthecurve(insideitsJacobian)heimprovedthe
Diophantineapproximation;thenhewasabletoconcludethroughasuitable
refinementofThue’stheorem,alsoprovedinthepaper. Thisrefinementwas
notasstrongasK.F.Roth’stheorem(provedonlyin1955),creatingfurther
complications to the proof; Siegel had to use simultaneous approximations
toseveralnumberstogetasharpenoughestimate.(Forthistask,Siegelused
ideasintroducedinthefirstpartofthepaper.)
On combining all of this, Siegel produced his theorem on integral points on
curves, which may be seen as a final result in this direction. At that time, this
was especially impressive, since Diophantine equations were often treated by
adhocmethods,withlittlepossibilityofembracingwholefamilies. (Oneofthe
fewexceptionsoccurredwithThue’smethods,alludedtoabove.)
The theorem also bears a marked geometrical content: an affine curve may
haveinfinitelymanyintegralpointsonlyifithasnon-negativeEulercharacter-
istic. (Thisisdefinedas2−2g−s wheregisthegenusofasmoothprojective
modelofthecurveandwheresisthenumberofpointsatinfinity,namelythose
1Forinstance,Siegelhadwritten(chronologically)rightbeforeanotherremarkablepaperonin-
tegralpointsbyprovingtheirfinitenessforhyperellipticequations y2 = f(x)underappropriate
assumptions(thisresultwasextractedfromalettertoMordellandwaspublishedunderthepseud-
onymXin[47]).
ix Preface
missing on the affine curve with respect to a smooth complete model.) Con-
versely, this condition becomes sufficient (for the existence of infinitely many
integral points) if we allow a sufficiently large number field and a sufficiently
large(fixed)denominatorforthecoordinates.2
Eachofthenumerousresultsandideasthatwehavementionedwouldhave
representedatthattimeamajoradvanceinitself. Henceitisdifficulttooveres-
timatetheimportanceofthispaperanditsinfluence,eventhinkingofcontem-
porarymathematics.
The paper, however, being written in German, is not accessible for a direct
reading to all mathematicians. There are of course modern good or excellent
expositionsinEnglishofsomeoftheresults, howeverwebelieveitmaybeof
interestformanytogothroughtheoriginalsourceforapreciseunderstanding
ofsomeprinciples,asreallyconceivedbySiegel. Inaddition,wethinkthatthis
paperisamodelalsofrom theviewpointofexposition; theideasandmethods
arepresentedinalimpidandsimultaneouslypreciseway.
AllofthisledthesecondauthortotheideaoftranslatingthepaperintoEng-
lish, and of publishing the result by the ‘Edizioni della Normale’. After some
partialattemptsforatranslation,thiswasfinallycarriedoutbythefirstauthor,
andhereistheoutput. Thetranslationwasmadeliterallyandkeepingthestyle
usedbySiegelasfaraspossible,insteadofrephrasingthetextinmoremodern
style. (Inparticular, Siegel is not usingtheengaging‘we’ but insteaduses the
comprehensive ‘one’. The reader should have this in mind when reading the
translation.)
Ithasbeeneventuallypossiblealsotoincludetheoriginaltextinthisvolume,
whichprovidesadditionalinformation.
Wehavealsoaddedtothetranslatedtextasmallnumberoffootnotes(marked
as“FOOTNOTE BY THE EDITORS”)tohighlightafewpointsthatwethinkare
worthnotingfortheconvenienceofthereader. Further,afterthetranslation,we
haveincludedintothispublicationanarticlebythetwoofus,describingsome
developmentsinthetopicofintegralpoints,andthreemodernproofsofSiegel’s
theorem (two of them being versions of the original argument). We have also
insertedafewreferencestootherworkarisingfromthepaperofSiegel.
ACKNOWLEDGEMENTS. WethanktheEdizionidellaNormaleforhavingwel-
comethisproject. WeespeciallythankMrs. LuisaFerriniofthe‘CentroEdiz-
ioni’, whosegreatcareandattentionhavemadeitpossibletoreachthesought
goal.
ClemensFuchsandUmbertoZannier
2Notethataffineimpliess >0;however,inviewofFaltings’theorem-see2.1below-allof
thisremainstruealsoforprojectivecurves,i.e.whens=0.
On some applications
of Diophantine approximations*
ClemensFuchs
EssaysofthePrussianAcademyofSciences.
Physical-MathematicalClass1929,No.1
Thewell-knownsimpledeductionruleaccordingtowhichforanydistributionof
morethannobjectstondrawersatleastonedrawercontainsatleasttwoobjects,
givesrisetoageneralizationoftheEuclideanalgorithm,whichbyinvestigations
dueto DIRICHLET, HERMITE and MINKOWSKI turnedouttobethesourceof
importantarithmeticlaws. Inparticularitimpliesastatementonhowprecisely
thenumber0canbeatleastapproximatedbyalinearcombination
L =h ω +···+h ω
0 0 r r
of suitable rational integers h ,...,h , which in absolute value are
0 r
boundedbyagivennaturalnumber H anddonotvanishsimultaneously,andof
givennumbersω ,...,ω ;infactforthebestapproximationitcertainlyholds
0 r
|L|≤(|ω |+···+|ω |)H−r,
0 r
anassertionthatdoesnotdependondeeperarithmeticpropertiesofthenumbers
ω ,...,ω .
0 r
The expression L is called an approximation form. If one then asks, how
preciselythenumber0canatbestbeapproximatedbytheapproximationform
h ω +···+h ω ,thenobviouslyanynon-trivialanswerwillcertainlydepend
0 0 r r
onthearithmeticpropertiesofthegivennumbersω ,...,ω .
0 r
Thisquestionparticularlycontainstheproblemtoinvestigatewhetheragiven
number ω is transcendental or not; one just has to choose ω = 1,ω =
0 1
ω,...,ω = ωr,H = 1,2,3,...,r = 1,2,3,.... The additional assump-
r
tion, to come up even with a non-zero lower bound for |L| as a function in H
andr,givesapositiveturnaroundtothetranscendenceproblem.
Also,theupperboundforthenumberoflatticepointsonanalgebraiccurve,
thus in particular the study of the finiteness of this number, leads, as will turn
out later, to the determination of a positive lower bound for the absolute value
ofacertainapproximationform.
Analogoustothearithmeticproblemsofbounding|L|fromaboveandfrom
below is an algebraic question. Let ω (x),...,ω (x) be series in powers of a
0 r
∗CARL LUDWIG SIEGEL, U¨ber einige Anwendungen diophantischer Approximationen, In:
“GesammelteAbhandlungen”,BandI,Springer-Verlag,Berlin-Heidelberg-NewYork,1966,209–
266.
Description:This book consists mainly of the translation, by C. Fuchs, of the 1929 landmark paper "Über einige Anwendungen diophantischer Approximationen" by C.L. Siegel. The paper contains proofs of most important results in transcendence theory and diophantine analysis, notably Siegel’s celebrated theorem