Table Of ContentOn combinatorial properties
of nil–Bohr sets of integers
and related problems
Jakub Konieczny
St Johns’s College
University of Oxford
A thesis submitted for the degree of
Doctor of Philosophy
Abstract
Author’s name: Jakub Konieczny.
(Under supervision of Ben Green.)
This thesis deals with five problems in additive combinatorics and ergodic
theory. A brief introduction to this general area and a summary of in-
cluded results is given in Chapter I.
InChapterII,weconsidersetsoftheform{n ∈ N | |p(n) mod 1| ≤ ε(n)},
0
where p is a polynomial and ε(n) ≥ 0. We obtain various conditions under
which any sufficiently large integer can be represented as a sum of 2 or 3
elements of a given set of this form.
In Chapter III, we study the class of weakly mixing sets of integers, and
prove that a certain class of polynomial equations can always be solved in
such a set.
In Chapter IV, we show that any nil–Bohr set contains a certain type
of additive pattern. Combined with earlier results of Host and Kra, this
leads to a partial combinatorial characterisation of nil–Bohr sets.
In Chapter V, we study the combinatorial properties of generalised poly-
nomials (expressions built from polynomials and the floor function). In
contrast with results of Bergelson and Leibman, we show that if the set
of integers where a given generalised polynomial takes a non-zero value
has asymptotic density 0, then it does not contain any IP set. This leads
to a partial characterisation of automatic sequences which are given by
generalised polynomial formulas.
InChapterVI,weestimatetheGowersnormsoftheThue-Morsesequence
and the Rudin-Shapiro sequence. This gives some of the simplest deter-
ministic examples of sequences with small Gowers norms of all orders.
Acknowledgements
The author wishes to express his gratitude to the following people:
• to Ben Green for an endless supply of problems and methods for solving them;
• to Jakub Byszewski for the numerous conversations which were productive and
enjoyable, and for the few which were both;
• to Tom Sanders, Roger Heath-Brown and David Conlon for comments on pre-
vious drafts of this thesis, especially Chapter II, and on writing in general;
• to Vitaly Bergelson for comments related to Chapters III and V, as well for his
highly contagious vitality;
• to Bryna Kra for comments related to Chapters II, III, IV;
• to Alexander Fish for comments related to Chapter III;
• to Dominik Kwietniak for comments related to Chapter V and life in general;
• toJean-PaulAlloucheandIngerH˚aland-KnutsonforcommentsrelatedtoChap-
ter V;
• to Tanja Eisner, Christian Mauduit, Clemens Mu¨llner, and Aihua Fan for com-
ments related to Chapter VI;
• to James Aaronson, Sean Eberhard, Sofia Lindqvist, Freddie Manners, Rudi
Mrazovi´c, Przemek Mazur and Aled Walker for many informal discussions;
• the organizers of the conference New developments around ×2 ×3 conjecture
and other classical problems in Ergodic Theory in Cieplice, Poland in May 2016;
• to National Science Centre in Poland, Clarendon Fund and St John’s College
Kendrew Fund for providing generous funding;
• last but not least, to all my family and friends and especially to Magda Rusac-
zonek, without whom this thesis would never have come to be.
Contents
I Introduction 3
I.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
I.1.1 Additive combinatorics . . . . . . . . . . . . . . . . . . . . . . 3
I.1.2 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 4
I.1.3 Group actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
I.1.4 Ergodic theory in additive combinatorics . . . . . . . . . . . . 7
I.1.5 IP sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
I.1.6 Nilsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
I.1.7 Nil-Bohr sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
I.1.8 Filtered groups and polynomial sequences . . . . . . . . . . . 13
I.1.9 Mal’cev coordinates and generalised polynomials . . . . . . . . 16
I.1.10 Equidistribution . . . . . . . . . . . . . . . . . . . . . . . . . . 19
I.1.11 Higher order Fourier analysis . . . . . . . . . . . . . . . . . . 21
I.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
II Nil–Bohr type sets as bases for the positive integers 27
II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
II.2 Non-bases of order 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
II.2.1 General strategy . . . . . . . . . . . . . . . . . . . . . . . . . 32
II.2.2 Quadratic irrationals . . . . . . . . . . . . . . . . . . . . . . . 34
II.2.3 Badly approximable reals . . . . . . . . . . . . . . . . . . . . . 36
II.2.4 Generic reals . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
II.3 Bases and almost bases of order 2 . . . . . . . . . . . . . . . . . . . . 42
II.3.1 Equidistribution and quantitative rationality . . . . . . . . . . 42
II.3.2 Almost bases of order 2 . . . . . . . . . . . . . . . . . . . . . 45
II.3.3 Exceptional values of α . . . . . . . . . . . . . . . . . . . . . . 47
II.4 Threshold for being a basis of order 2 . . . . . . . . . . . . . . . . . . 50
II.4.1 Quadratic irrationals . . . . . . . . . . . . . . . . . . . . . . . 52
i
II.4.2 The algorithmic approach . . . . . . . . . . . . . . . . . . . . 55
II.5 Bases of order 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
II.5.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
II.5.2 Minor arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
II.5.3 Major arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
II.5.4 Main contribution . . . . . . . . . . . . . . . . . . . . . . . . . 62
II.6 Higher degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
II.6.1 Bases of order 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 64
II.6.2 Non-bases of order 2 . . . . . . . . . . . . . . . . . . . . . . . 67
IIIWeakly mixing sets and polynomial equations 69
III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
III.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
III.3 Uniform ergodic theorem . . . . . . . . . . . . . . . . . . . . . . . . . 75
III.3.1 Outline and initial reductions . . . . . . . . . . . . . . . . . . 75
III.3.2 Uniform convergence for linear polynomials . . . . . . . . . . . 77
III.4 PET induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
III.4.1 Definitions and basic properties . . . . . . . . . . . . . . . . . 80
III.4.2 Uniform convergence in higher degrees . . . . . . . . . . . . . 82
III.5 Doubly polynomial averages . . . . . . . . . . . . . . . . . . . . . . . 83
III.5.1 Initial reductions . . . . . . . . . . . . . . . . . . . . . . . . . 83
III.5.2 Polynomial Følner averages . . . . . . . . . . . . . . . . . . . 85
III.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
IVCombinatorial characterisation of nil–Bohr sets of integers 91
IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
IV.2 Polynomial maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
IV.2.1 Main results reformulated . . . . . . . . . . . . . . . . . . . . 94
IV.2.2 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
IV.2.3 VIP-systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
IV.2.4 Host-Kra cube groups . . . . . . . . . . . . . . . . . . . . . . 98
IV.2.5 Host-Kra cubes and nilmanifolds . . . . . . . . . . . . . . . . 100
IV.3 S -sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
k
IV.3.1 IP sets revisited . . . . . . . . . . . . . . . . . . . . . . . . . . 102
IV.3.2 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 103
IV.3.3 Asymptotic subsequences . . . . . . . . . . . . . . . . . . . . . 108
IV.3.4 Stable sequences . . . . . . . . . . . . . . . . . . . . . . . . . 110
ii
IV.3.5 Stable polynomials . . . . . . . . . . . . . . . . . . . . . . . . 114
IV.4 Basic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
IV.4.1 Abelian case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
IV.4.2 Case d = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
IV.5 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
IV.5.1 Robust version and induction . . . . . . . . . . . . . . . . . . 120
IV.5.2 Reduction to an abelian problem . . . . . . . . . . . . . . . . 122
IV.5.3 A counterexample . . . . . . . . . . . . . . . . . . . . . . . . . 123
IV.6 Model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
IV.6.1 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
IV.6.2 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
IV.6.3 Final step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
IV.6.4 Proof of Theorem IV.1.1 . . . . . . . . . . . . . . . . . . . . . 131
V Automatic sequences and generalised polynomials 132
V.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
V.2 Automatic sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
V.3 Density 1 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
V.3.1 Polynomial sequences . . . . . . . . . . . . . . . . . . . . . . . 142
V.3.2 Generalised polynomials . . . . . . . . . . . . . . . . . . . . . 144
V.4 Sparse sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
V.4.1 Arid sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
V.4.2 Proof strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
V.4.3 Comments and applications . . . . . . . . . . . . . . . . . . . 151
V.5 Sparse generalised polynomials . . . . . . . . . . . . . . . . . . . . . . 152
V.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
V.5.2 Initial reductions . . . . . . . . . . . . . . . . . . . . . . . . . 154
V.5.3 Fractional parts and limits . . . . . . . . . . . . . . . . . . . . 155
V.5.4 Fractional parts of polynomials . . . . . . . . . . . . . . . . . 157
V.5.5 Group generated by fractional parts . . . . . . . . . . . . . . . 160
V.6 Sparse automatic sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
V.6.1 Density of symbols . . . . . . . . . . . . . . . . . . . . . . . . 162
V.6.2 Dichotomy for sparse automatic sets . . . . . . . . . . . . . . 163
V.6.3 IP rich automatic sets . . . . . . . . . . . . . . . . . . . . . . 166
V.6.4 Proof of Theorem V.1.6 . . . . . . . . . . . . . . . . . . . . . 167
V.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
iii
V.7.1 Small fractional parts . . . . . . . . . . . . . . . . . . . . . . . 171
V.7.2 IP rich sequences . . . . . . . . . . . . . . . . . . . . . . . . . 175
V.7.3 Very sparse sequences . . . . . . . . . . . . . . . . . . . . . . 178
V.8 Exponential sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 180
V.8.1 Automaticity of recursive sequences . . . . . . . . . . . . . . . 181
V.8.2 Exponentially sparse generalised polynomial sets . . . . . . . . 183
V.8.3 Quadratic Pisot numbers . . . . . . . . . . . . . . . . . . . . . 184
V.8.4 Cubic Pisot numbers . . . . . . . . . . . . . . . . . . . . . . . 186
V.9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
V.9.1 Small fractional parts . . . . . . . . . . . . . . . . . . . . . . . 189
V.9.2 Exponential sequences . . . . . . . . . . . . . . . . . . . . . . 190
V.9.3 Morphic words . . . . . . . . . . . . . . . . . . . . . . . . . . 191
V.9.4 Regular sequences . . . . . . . . . . . . . . . . . . . . . . . . . 192
VIUniformity of automatic sequences 193
VI.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
VI.2 Thue-Morse sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
VI.3 Rudin-Shapiro sequence . . . . . . . . . . . . . . . . . . . . . . . . . 201
VI.4 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A Continued fractions 208
A.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
A.2 Ergodic perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
A.3 Good rational approximations . . . . . . . . . . . . . . . . . . . . . . 210
B Ultrafilters and limits 212
Bibliography 214
iv
Notation
Below we list some of the notation used in this thesis, some of which is not entirely
standard.
N, N : the sets of positive integers and non-negative integers, respectively;
0
Z, Q, R, C,...: integers, rational numbers, real numbers, complex numbers, etc.;
F, F : the family of non-empty (resp. all) subsets of N;
∅
T: the 1-dimensional torus R/Z;
[N]: the initial interval {0,1,2,...,N −1} of N ;
0
Φ : the Iverson bracket, equal 1 if Φ is a true sentence and 0 otherwise;
(cid:74) (cid:75)
(cid:98)x(cid:99),(cid:100)x(cid:101),(cid:104)(cid:104)x(cid:105)(cid:105): thebestintegerapproximationofx ∈ Rbyintegerfrombelow, above
and in absolute value (cid:98)x+1/2(cid:99), respectively;
{x},(cid:107)x(cid:107): fractional part x − (cid:98)x(cid:99) and absolute fractional part |x−(cid:104)(cid:104)x(cid:105)(cid:105)| of x ∈ R
respectively, also used for x ∈ T;
1 : the characteristic sequence x ∈ X of the set X;
X
(cid:74) (cid:75)
e(x): the function e2πix, x ∈ R or x ∈ T;
ν (x): the p-adic valuation of x ∈ Q, ν (pta) = t if p (cid:45) a,b;
p p b
degp, lcp: the degree and the leading coefficient of a polynomial p ∈ R[x];
A+B: the sumset {a+b | a ∈ A, b ∈ B} of two sets A and B;
kA: the k-fold sumset A+A+···+A (k times).
1
We use the symbol E borrowed from probability to denote averages:
E 1 (cid:88)
f(x) := f(x).
|X|
x∈X x∈X
Weusestandardasymptoticnotation. WewriteX (cid:28) Y orX = O(Y)if|X| ≤ cY
for a universal constant c > 0. If c is allowed to depend on a parameter p, we denote
it by a subscript: X (cid:28) Y or X = O (Y). Conversely, we write X (cid:29) Y of X = Ω(Y)
p p
if X ≥ cY. If X (cid:28) Y (cid:28) X, we write X = Θ(Y) or X ∼ Y.
Similarly, for a variable v, we write X = o (Y) if |X| ≤ c(v)Y where c(v) → 0
v→z
as v → z. If v and z are clear from the context, we suppress the subscript v → z. If
c is allowed to depend on a parameter p, we denote this by subscript: X = o or
p;v→z
X = o (Y). Finally, we write X = ω(Y) if X > c(v)Y where c(v) → ∞ as v → z.
p
We often write symbols O(·),Ω(·),Θ(·),o(·),ω(·) to denote unspecified functions
with the appropriate growth.
For a set A ⊂ N, we define various notions of density. We list the ones which will
be useful in this document:
|A∩[n]|
d(A) = lim (natural/asymptotic density, if exists),
n→∞ n
|A∩[n]|
d(A) = limsup (upper natural density),
n
n→∞
|A∩[m,m+n)|
d∗(A) = limsupsup (upper Banach density).
n
n→∞ m
2