Table Of ContentDOCTORA L T H E S IS
Department of Computer Science, Electrical and Space Engineering
Division of Signals and Systems
On Autonomous Articulated Vehicles
T
h
ISSN 1402-1544 a
k
ISBN 978-91-7583-348-4 (print) e
r
ISBN 978-91-7583-349-1 (pdf) N
a
y
Luleå University of Technology 2015 l
O
n
A
u
t
o
n
o
m
o
u
s
A
r
t
i
c
u
la
t
e
d
V
e
h
i
c
le Thaker Nayl
s
On Autonomous Articulated Vehicles
Thaker Mahmood Nayl
AutomaticControlEnginnering
DivisionofSignalsandSystems
DepartmentofComputerScience,ElectricalandSpaceEngineering
Lulea˚ UniversityofTechnology
Lulea˚,Sweden
June2015
Supervisors:
GeorgeNikolakopoulosandThomasGustafsson
Printed by Luleå University of Technology, Graphic Production 2015
ISSN 1402-1544
ISBN 978-91-7583-348-4 (print)
ISBN 978-91-7583-349-1 (pdf)
Luleå 2015
www.ltu.se
Tomyfamilyfortheirunconditional
supportthroughoutalltheseyears
A
BSTRACT
Theobjectiveofthisthesisistoaddresstheproblemsofmodeling,pathplanningandpathfollowing
foranarticulatedvehicleinarealisticenvironmentandinthepresenceofmultipleobstacles.
In greater detail, the problem of the kinematic modeling of an articulated vehicle is revisited
throughtheproposalofapropermodelinwhichthedimensionsandpropertiesofthevehiclecanbe
fullydescribed,ratherthanconsideringitasaunitpoint.Basedonthisapproach,nonlinearandlinear
errorkinematicsmodelsareproposedthatarealsoabletoaccountfortheeffectoftheslipangles,a
factorthatcancausedramaticdeteriorationintheoverallperformanceofthevehicle.
Subsequently,twodifferentconceptsforaddressingtheproblemofpathfollowingforarticulated
vehiclesareproposed.Thefirstconceptisbasedonaswitchingmodelpredictivecontrolarchitecture,
whichreliesonmultipleswitchinglinearerrordynamicsmodelsofthearticulatedvehicletoaccount
for the effect of varying the slip angles and cruising speed as well as the mechanical and physical
constraints of the vehicle. The second proposed control concept is a novel nonlinear sliding mode
controller that introduces continuous sliding surfaces to reduce chattering effects while tracking a
reference trajectory. The sliding mode controller is utilized based on the extracted nonlinear error
coordinatesofthearticulatedvehicle.Thefeasibilityofthisapproachhasbeendemonstratedthrough
multipleexperimentaltestsonasmallscaleusingafullyrealisticarticulatedvehicle.
Finally,inthepathplanningpartofthethesis,artificialpotentialfieldandbugalgorithmsaread-
dressed. Morespecifically,thepotentialfieldpathplanningalgorithmismodifiedbyconsideringthe
nonlinearkinematicmodelofthearticulatedvehicleandcorrespondinglyadaptingtherepulsiveand
attractivecoefficients. Inthecaseofthewell-knownbugalgorithm,asuitablenavigationmethodfor
anarticulatedvehicleforlocalpathplanningbasedonaminimumsetofsensorsandwithdecreased
complexityforonlineimplementationisalsoproposed.Furthermore,theperformanceofthemodified
potentialfieldmethodhasbeenexperimentallyevaluatedinmultiplepathplanningscenariosusing
thepreviouslymentionedsmall-scalerealisticarticulatedvehicle.
C
ONTENTS
PartI
1 ListofPublicationsandContributions 3
1.1 PublicationsAppendedtotheThesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 PublicationsNotAppendedtotheThesis. . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 SummaryofPublications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 ThesisOutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Introduction 9
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 MathematicalModel 17
3.1 ModelingofanArticulatedVehicle. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 ErrorDynamicsModeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 ControlDesign 25
4.1 SwitchingModelPredictiveControl . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 SlidingModeControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 PathPlanning 35
5.1 BugPathPlanningAlgorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 ModifiedPotentialFieldAlgorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6 ConclusionsandFutureWork 43
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
References 51
PartII
PaperA 55
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
II CONTENTS
2 ArticulatedVehicleModeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3 ModelPredictiveControlDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
PaperB 79
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2 ArticulatedVehicleModeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3 ErrorDynamicsModeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4 ModelPredictiveControlDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
PaperC 95
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2 ArticulatedVehicleErrorDynamicsModeling . . . . . . . . . . . . . . . . . . . . . 98
3 OnLineMPCbasedPathPlanningforArticulatedVehicle . . . . . . . . . . . . . . 101
4 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
PaperD 111
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2 ArticulatedVehicleModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3 OnlineSmoothPathPlanningforanArticulatedVehicle . . . . . . . . . . . . . . . 116
4 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
PaperE 127
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
2 ArticulatedVehicleAndErrorDynamicModels . . . . . . . . . . . . . . . . . . . . 130
3 PathPlanningandMotionControl . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
PaperF 149
1 ArticulatedVehicleModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2 SlidingModeControlforanArticulatedVehicle. . . . . . . . . . . . . . . . . . . . 154
3 SystemArchitecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Description:I am deeply thankful to my beloved mother, who brought me .. articulated vehicles can be understood in terms of the degrees of freedom autonomous systems are guided by cameras that follow an optical guide made . the problem of designing a path-following controller for an n-trailer vehicle based.