Table Of ContentON ALMOST EVERYWHERE EXPONENTIAL
SUMMABILITY OF RECTANGULAR PARTIAL SUMS OF
DOUBLE TRIGONOMETRIC FOURIER SERIES
7
1
0
USHANGIGOGINAVAAND GRIGORIKARAGULYAN
2
n
a
J
0 Abstract. Inthispaperwestudythea.e. exponentialstrongsumma-
3
bility problem for the rectangular partial sums of double trigonometric
Fourier series of thefunctions from LlogL .
]
P
A
1. Introduction
.
h
t We denote the set of all non-negative integers by N. Let T := [ π,π) =
a
m R/2π and R := ( , ). Denote by L1(T) the class of all me−asurable
functions f on R t−ha∞t a∞re 2π-periodic and satisfy
[
1
f := f < .
v k k1 | | ∞
0 ZT
1
7 The Fourier series of a function f L1(T) with respect to the trigonometric
8 ∈
system is
0
1. ∞
0 (1) c einx,
n
7
n=−∞
1 X
: where
v
1
Xi cn := f(x)e−inxdx
2π
r ZT
a
are the Fourier coefficients of f. Denote by S (x,f) the partial sums of the
n
Fourier series of f and let
n
1
σ (x,f) = S (x,f)
n k
n+1
k=0
X
be the (C,1) means of (1). Fejér [1] proved that σ (f) converges to f uni-
n
formly for any 2π-periodic continuous function. Lebesgue in [18] established
almost everywhere convergence of (C,1) means if f L1(T). The strong
∈
02010 Mathematics Subject Classification 42C10 .
Keywordsandphrases: DoubleFourierseries,strongsummability,exponentialmeans.
1
2 USHANGIGOGINAVAANDGRIGORIKARAGULYAN
summability problem, i.e. the convergence of the strong means
n−1
1
(2) S (x,f) f(x)p, x T, p > 0,
k
n | − | ∈
k=0
X
was first considered by Hardy and Littlewood in [9]. They showed that for
any f Lr(T) (1< r < ) the strong means tend to 0 a.e. as n . The
trigono∈metric Fourier ser∞ies of f L1(T) is said to be (H,p)-sum→m∞able at
x T if the values (2) converge ∈to 0 as n . The (H,p)-summability
pro∈blem in L1(T) has been investigated by M→arc∞inkiewicz [19] for p =2, and
later by Zygmund [34] for the general case 1 p < .
≤ ∞
Let Φ : [0, ) [0, ), Φ(0) = 0, be a continuous increasing function.
∞ → ∞
We say a series with the partial sums s strong Φ-summable to a limit s if
n
n−1
1
lim Φ(s s ) = 0.
k
n→∞n | − |
k=0
X
In [20] Oskolkov first considered the a.e strong Φ-summability problem of
Fourier series with exponentially growing Φ. Namely, he proved a.e strong
Φ-summability of Fourier series if lnΦ(t)= O(t/lnlnt) as t .
→ ∞
In [21] Rodin proved
Theorem R (Rodin). If a continuous function Φ: [0, ) [0, ), Φ(0) =
∞ → ∞
0, satisfies the condition
lnΦ(t)
limsup < ,
t ∞
t→+∞
then for any f L1(T) the relation
∈
n−1
1
(3) lim Φ(S (x,f) f(x) ) = 0
k
n→∞n | − |
k=0
X
holds for a. e. x T.
∈
Karagulyan [11, 12] proved that the exponential growth in Rodin’s theo-
rem is optimal. Moreover, it was proved
TheoremK(Karagulyan). Ifacontinuous increasing functionΦ : [0, )
∞ →
[0, ),Φ(0) = 0, satisfies the condition
∞
lnΦ(t)
limsup = ,
t ∞
t→+∞
then there exists a function f L1(T), for which the relation
∈
n−1
1
limsup Φ(S (x,f) )=
k
n | | ∞
n→∞
k=0
X
holds everywhere on T.
ALMOST EVERYWHERE EXPONENTIAL SUMMABILITY 3
In this paper we study the exponential summability problem for the rect-
angular partial sums of double Fourier series. Let f L1(T2) be a function
∈
with Fourier series
∞
(4) c ei(mx+ny),
nm
m,n=−∞
X
where
1
c = f(x ,x )e−i(mx1+nx2)dx dx
nm 4π2 1 2 1 2
ZT2Z
are the Fourier coefficients of the function f. The rectangular partial sums
of (4) are defined by
M N
S (f)= S (x ,x ,f)= c ei(mx1+nx2).
MN MN 1 2 nm
m=−Mn=−N
X X
We denote by LlogL T2 the class of measurable functions f, with
(cid:0) (cid:1) f log+ f < ,
| | | | ∞
ZT2Z
where log+u := I logu, u > 0. For the rectangular partial sums of
(1,∞)
two-dimensional trigonometric FourierseriesJessen,MarcinkiewiczandZyg-
mund [10] has proved for any f LlogL T2 that
∈
1 n−1m−1 (cid:0) (cid:1)
lim (S (x ,x ,f) f(x ,x )) = 0
ij 1 2 1 2
n,m→∞nm −
i=0 j=0
X X
for a. e. (x ,x ) T2. They also showed that for every non-negative
1 2
∈
function ω : [0, ) [0, ) satisfying ω(t) , ω(t) log+t −1 0 as
∞ → ∞ ↑ ∞ →
t , there exists a function f such that f ω(f ) L1 T2 and the
→ ∞ | | | | ∈(cid:0) (cid:1)
(C,1,1) means of double Fourier series of f diverge a.e..
(cid:0) (cid:1)
The two dimensional a.e. strong rectangular (H,p)-summability, i.e. the
relation
n−1m−1
1
lim S (x ,x ,f) f(x ,x ) p =0 a.e.
ij 1 2 1 2
n,m→∞nm | − |
i=0 j=0
X X
was proved by Gogoladze [8]for f LlogL T2 . These results show that in
∈
two dimensional case the optimal class of functions for (C,1,1) summability
and strong summability coincide. That is th(cid:0)e cl(cid:1)ass of functions LlogL T2 .
We prove the following
(cid:0) (cid:1)
Theorem. If a continuous increasing function Φ: [0, ) [0, ), Φ(0) =
∞ → ∞
0, satisfies the condition
lnΦ(t)
(5) limsup < ,
t→+∞ t/lnlnt ∞
p
4 USHANGIGOGINAVAANDGRIGORIKARAGULYAN
then for any f LlogL T2 the relation
∈
n−(cid:0)1m−(cid:1)1
1
(6) lim Φ(S (x ,x ,f) f(x ,x ) )= 0
ij 1 2 1 2
n,m→∞nm | − |
i=0 j=0
X X
holds for a. e. (x ,x ) T2.
1 2
∈
As a corollary of this result we get the Gogoladze [8] theorem on a.e.
Hp-summability of double Fourier series. From Jessen, Marcinkiewicz and
Zygmund [10] theorem it follows that the class LlogL T2 in our theorem
is necessary in the context of strong summability question. That is, it is not
possible to give a larger convergence space than LlogL(cid:0) T(cid:1)2 . Our method
of proof do not allow to get (6) under the weaker condition
(cid:0) (cid:1)
lnΦ(t)
(7) limsup < .
t→+∞ √t ∞
There is a conjecture that (7) is the optimal bound of Φ ensuring a.e. rect-
angular strong summability (6) for every function f LlogL T2 .
∈
The results on strong summability and approximation by trigonometric
(cid:0) (cid:1)
Fourier series have been extended for several other orthogonal systems, see
Schipp [23, 24, 25], Leindler [14, 15, 16, 17], Totik [26, 27, 28, 29], Gogi-
nava,Gogoladze[5,6],Goginava,Gogoladze, Karagulyan[7],Gat,Goginava,
Karagulyan [3, 4], Weisz [30]-[33].
2. Auxiliary lemmas
The notation a . b will stand for a < c b, where c > 0 is an absolute
·
constant. We shall write a b if the relations a . b and b . a hold at the
∼
same time. Everywhere below q > 1 will be used as the conjugate of p > 1,
that is 1/p+1/q = 1. [a] denotes the integer part of a R.
The maximal function of a function f L1(T) is defi∈ned by
∈
1
Mf (x) := sup f(y) dy,
I:x∈I⊂T|I| Z | |
I
where I is an open interval. The following one dimensional operators intro-
duced by Gabisonia [2] are significant tools in the investigations of strong
summability problems:
q 1/q
k
[nπ] n
n
G(n)f(x):= f (x+t) + f(x t) dt ,
p k | | | − |
Xk=1 kZ−1
n
G f(x):= supG(n)f(x).
p p
n∈N
Oskolkov’s following lemma plays key role in the proof of the basic lemma.
ALMOST EVERYWHERE EXPONENTIAL SUMMABILITY 5
Lemma 1 (Oskolkov, [20]). For any family of pairwise disjoint intervals
∆ T with centers c it holds the inequality
k k
⊂
q
|∆j|
(8) x T : sup j |x−cj|+|∆j| > λ . exp( cλ), λ > 0,
(cid:12)(cid:12) ∈ p>1 Pp(cid:16)lnln(p+2)(cid:17) (cid:12)(cid:12) −
(cid:12) (cid:12)
(cid:12) (cid:12)
where c(cid:12)>0 is an absolute constant. (cid:12)
(cid:12) (cid:12)
One can easily check that
q 1/q q
|∆j| |∆j|
sup j |x−cj|+|∆j| . 1,sup j |x−cj|+|∆j| .
p>1 (cid:16)P (cid:16)plnln(p+2(cid:17)) (cid:17) p>1 Pp(cid:16)lnln(p+2)(cid:17)
Combining this with (8), we get
q 1/q
|∆j|
(9) sup j |x−cj|+|∆j| . 1.
Tp>1 (cid:16)P (cid:16)plnln(p+2(cid:17)) (cid:17)
Z
Lemma 2. If f L1(T), then
∈
G f(x) 1 1/2
(10) x T :sup p > λ . f , λ > 0.
∈ plnln(p+2) λ k k1
(cid:12)(cid:26) p>1 (cid:27)(cid:12) (cid:18) (cid:19)
(cid:12) (cid:12)
(cid:12) (cid:12)
Proof. It i(cid:12)s enough to prove the same estim(cid:12)ate for the modified operators
q 1/q
k
[nπ] n
n
(11) G′f(x):= sup f (x+t) dt .
p n∈NXk=1kkZ−1 | |
n
Using the Calderon-Zygmund lemma, for the maximal function we get the
relation
∞
(12) R := x T :Mf (x) > √λ = ∆ , λ > 0,
λ k
∈
n o k[=0
where ∆ T are disjoint open intervals such that
k
⊂
1
(13) √λ f(t) dt 2√λ,
≤ ∆ | | ≤
k
| | Z
∆k
1
(14) R f .
| λ|≤ √λk k1
6 USHANGIGOGINAVAANDGRIGORIKARAGULYAN
Denote δn := [(k 1)/n,k/n] and δn(x) := x+δn. Separating the terms in
k − k k
the sum (11) with k satisfying δn(x) R , we get
k ⊂ λ
q 1/q
k
n
n
(15) G′f(x) sup f(x+t) dt
p ≤n∈Nk:δknX(x)⊂RλkkZ−1 | |
n
q 1/q
k
n
n
+sup f(x+t) dt
n∈Nk:δknX(x)6⊂RλkkZ−1 | |
n
:= I +II.
From the definition of R in the case δn(x) R it follows that
λ k 6⊂ λ
k
n
n f (x+t) dt √λ.
| | ≤
kZ−1
n
Thus we conclude
∞ 1/q 1/q
1 1
(16) II √λ . √λ . p√λ.
≤ kq q 1
!
k=1 (cid:18) − (cid:19)
X
Given x T set
∈
min k :δn(x) ∆ if k :δn(x) ∆ =∅,
ki(x)= { k ⊂ i} if {k :δkn(x) ⊂ ∆i} 6=∅.
(cid:26) ∞ { k ⊂ i}
∞
DenoteR := 3∆ andtakeanarbitrary point x T R . Onecaneasily
λ k λ
∈ \
k=1
check theat if kiS(x) 6= ∞, then e
k (x)
i
∆ x c ,
i i
∋ n ∼ | − |
ALMOST EVERYWHERE EXPONENTIAL SUMMABILITY 7
where c is the center of the interval ∆ . Thus for any x / R we obtain
i i λ
∈
e
q 1/q
∞
n
(17) I = sup f (t) dt
n∈N Xi=1k:δknX(x)⊂∆i kδnZ(x) | |
k
q 1/q
∞
n
sup f (t) dt
≤ n∈N Xi=1 k:δknX(x)⊂∆i kδnZ(x) | |
k
q 1/q
∞
n ∆ 1
i
sup | | f (t) dt
≤ n∈Ni=1ki(x)|∆i|Z | |
X ∆i
∞ q 1/q
n ∆
. √λsup | i|
k (x)
n i=1(cid:18) i (cid:19) !
X
∞ q 1/q
∆
. √λ | i| , x / R .
λ
x c + ∆ ∈
i=1(cid:18)| − i| | i|(cid:19) !
X
e
Using Chebyshev’s inequality, from (9), (16) and (17) it follows that
G′f(x)
x T R : sup p > λ
λ
∈ \ plnln(p+2)
(cid:12)(cid:26) p>1 (cid:27)(cid:12)
(cid:12) (cid:12)
(cid:12)(cid:12) e (cid:12)(cid:12) |∆j| q 1/q
. x T R :√λ 1+sup j |x−cj|+|∆j| cλ
(cid:12)(cid:12) ∈ \ λ p>1 (cid:16)P (cid:16)plnln(p+2(cid:17)) (cid:17) ≥ (cid:12)(cid:12)
(cid:12) (cid:12)
(cid:12) (cid:12)
e
(cid:12) q 1/q (cid:12)
(cid:12) |∆j| (cid:12)
. (cid:12)1 sup j |x−cj|+|∆j| dx (cid:12)
√λ p>1 (cid:16)P (cid:16)plnln(p+2(cid:17)) (cid:17)
ZT
1
. ,
√λ
for an appropriate absolute constant c > 0. Applying homogeneity, one can
get
G′f(x) f 1/2
(18) x T R : sup p > λ . k k1 , λ > 0.
λ
∈ \ plnln(p+2) λ
(cid:12)(cid:26) p>1 (cid:27)(cid:12) (cid:18) (cid:19)
(cid:12) (cid:12)
(cid:12) e (cid:12)
(cid:12) (cid:12)
8 USHANGIGOGINAVAANDGRIGORIKARAGULYAN
Consequently, from (14)-(18) we get
G′f(x)
x T : sup p > λ
∈ plnln(p+2)
(cid:12)(cid:26) p>1 (cid:27)(cid:12)
(cid:12)(cid:12)(cid:12) x T R :sup G′pf((cid:12)(cid:12)(cid:12)x) > λ + R˜
λ λ
≤ ∈ \ plnln(p+2) | |
(cid:12)(cid:26) p>1 (cid:27)(cid:12)
(cid:12) (cid:12)
(cid:12) f 1/e2 f (cid:12)
. (cid:12) k k1 + k k1. (cid:12)
λ √λ
(cid:18) (cid:19)
Again using homogeneity, we obtain (10). (cid:3)
We will need the following estimations.
Lemma 3 (Gabisonia, [2]). If p > 1 and f L1(T2), then
∈
1/p
n−1
1
(19) S (x,f)p . G(n)f(x).
n | j | p
j=0
X
Lemma 4 (Schipp, [22]). If f L1(T2), then
∈
1/p
n−1
1
(20) S (x,f) p . pG f(x).
j 2
n | |
j=0
X
Rodin [21] proved the weak (1,1)-type estimate for the operators G f(x)
p
with a fixed p > 1. From this fact, applying a standard argument, one can
derive
Lemma 5 (Rodin, [21]). Let f LlogL(T). Then
∈
G (f) . 1+ f log f .
k 2 k1 | | | |
ZT
For any function f L1(T2) define
∈
G (x ,x ;f) = G f (x ), G (x ,x ;f)= G f (x ),
p,1 1 2 p x2 1 p,2 1 2 p x1 2
G(n)(x ,x ;f) = G(n)f (x ), G(n)(x ,x ;f) = G(n)f (x ),
p,1 1 2 p x2 1 p,2 1 2 p x1 2
where f () = f(,x ) and f () = f(x , ) are considered as functions on
x2 · · 2 x1 · 1 ·
x and x respectively. Similarly one dimensional partial sums of f(x ,x )
1 2 1 2
with respect to each variables will be denoted by
S (x ,x ,f)= S (x ,f ), S (x ,x ,f)= S (x ,f ).
n,1 1 2 n 1 x2 n,2 1 2 n 2 x1
ALMOST EVERYWHERE EXPONENTIAL SUMMABILITY 9
Lemma 6. If f LlogL(T2), then
∈
1/p
n−1m−1
1 S (x ,x ,f)p
(cid:12) nm i=0 j=0 | i,j 1 2 | ! (cid:12)
(cid:12)(cid:12)(cid:12)spu>p1ns,mu∈pN P Pp2lnln(p+2) > λ(cid:12)(cid:12)(cid:12)
(cid:12) (cid:12)
(cid:12) (cid:12)
(cid:12) (cid:12)
(cid:12) (cid:12)
(cid:12) 1/2 (cid:12)
(cid:12) (cid:12)
(cid:12) 1 (cid:12)
. 1+ f log+ f , λ >0.
λ | | | |
ZT2Z
Proof. Using (19), (20) and generalized Minkowsi’s inequality, we get
n−1m−1 n−1m−1
1 1
S (x ,x ,f) p = S (x ,x ,S (f)) p
i,j 1 2 i,1 1 2 j,2
nm | | nm | |
i=0 j=0 i=0 j=0
X X X X
m−1
1 p
(n)
G (x ,x , S (f))
≤ m p,1 1 2 | j,2 |
Xj=0 (cid:16) (cid:17)
p
1/p
m−1
1
G(n) x ,x , S (f)p
≤ p,1 1 2 m | j,2 |
j=0
X
1/pp
m−1
1
G x ,x , S (f)p
p,1 1 2 j,2
≤ m | |
j=0
X
. pp(G (x ,x ,G (f)))p.
p,1 1 2 2,2
Hence we obtain
1/p
n−1m−1
1 S (x ,x ,f)p
nm i=0 j=0 | i,j 1 2 | !
Ω = (x1,x2)∈ T2 :spu>p1ns,mu∈pN P Pp2lnln(p+2) > λ
G (x ,x ,G (f))
(x ,x ) T2 : sup p,1 1 2 2,2 > λ ,
1 2
⊂ ∈ plnln(p+2)
(cid:26) p>1 (cid:27)
10 USHANGIGOGINAVAANDGRIGORIKARAGULYAN
then, applying Lemma 2 and 5, we conclude
Ω = I (x ,x )dx dx = dx I (x ,x )dx
Ω 1 2 1 2 2 Ω 1 2 1
| |
TZ2 ZT ZT
1/2
1
. G (x ,x ,f)dx dx
2,2 1 2 1 2
λ
ZT ZT
1/2
1
. 1+ f (x ,x ) log+ f(x ,x ) dx dx
1 2 1 2 1 2
λ | | | |
ZT ZT
1/2
1
. 1+ f (x ,x ) log+ f(x ,x ) dx dx .
1 2 1 2 1 2
λ | | | |
TZ2
Lemma is proved. (cid:3)
3. Proof of Theorem 1
Let L := L T2 be Orlicz space of functions on T2 generated by the
M M
Young function M(t) = tlog+t. Itis known that L is aBanach space with
(cid:0) (cid:1) M
respect to the Luxemburg norm
f
f := inf λ : λ > 0, M | | 1 < .
k kM λ ≤ ∞
XZ (cid:18) (cid:19)
According to a theorem from ([13], Chap. 2, theorem 9.5) we have
0,5 1+ M( f ) f 1+ M( f )
| | ≤ k kM ≤ | |
TZ2 ZT2
provided f = 1. Hence from Lemma 6 we conclude
k kM
1/p
n−1m−1
1 S (f)p
(cid:12) nm i=0 j=0 | i,j | ! (cid:12) f 1/2
(21) (cid:12)(cid:12)(cid:12)(cid:12)spu>p1ns,mu∈pN pP2loPglog(p+2) > λ(cid:12)(cid:12)(cid:12)(cid:12). (cid:18)k λkM(cid:19) .
(cid:12) (cid:12)
(cid:12) (cid:12)
(cid:12) (cid:12)
(cid:12) (cid:12)
Indeed, (cid:12)at first we deduce the case of f = 1, then(cid:12)using a homogeneity
(cid:12) k kM (cid:12)
argument, we get the inequality in the general case.