Table Of ContentSergey Skipidarov · Mikhail Nikitin
Editors
Novel Thermoelectric
Materials and Device
Design Concepts
Novel Thermoelectric Materials and Device
Design Concepts
(cid:129)
Sergey Skipidarov Mikhail Nikitin
Editors
Novel Thermoelectric
Materials and Device
Design Concepts
Editors
SergeySkipidarov MikhailNikitin
RusTecLLC RusTecLLC
Moscow,Russia Moscow,Russia
ThermoelectricPowerGeneration
ISBN978-3-030-12056-6 ISBN978-3-030-12057-3 (eBook)
https://doi.org/10.1007/978-3-030-12057-3
©SpringerNatureSwitzerlandAG2019
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe
materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,
broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation
storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology
nowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this
bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor
theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany
errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional
claimsinpublishedmapsandinstitutionalaffiliations.
ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG
Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
Preface
Book 1 of book series Thermoelectric Power Generation includes chapters that
discussedwaysonhowtocreateeffectivethermoelectricmaterialsformanufactur-
inghigh-performancethermoelectricgenerators(TEGs)operatinginlow-,mid-,and
high-temperature ranges. The problem is very old and very difficult to solve.
Unfortunately,nowadays,weseealackofinnovativeandaffordablen-typeandp-
typethermoelectricmaterialsandTEGsonthemarket.
The indomitable consumption of fossil fuels has resulted in gigajoules of
low-potentialwasteheatandhugeamountofgreenhousegases.Wasteheatenergy,
whichisconditionallyafree-of-chargeenergy,isestimatedtobefrom50to70%of
theprimaryenergyproducedfromtheburningoffossilfuels.Low-potentialheatcan
be generated due to absorption of sunlight as well. So, it is easy to generate waste
heat,butdifficulttoconvertitintoelectricalenergy.
The efficient recovery of low-potential heat is an important and nontrivial task.
Sourcesofsuchheatareplentifullyeverywhere,and,asarule,itissimplydissipated
withoutanybenefittothepeople.Thisiscausedbythefactthatlow-potentialwaste
heatisstronglylocalizednearheatsources;therefore,thatheatisdifficulttouseina
cost-effectivemannerforanintendedpurpose.TEGsaresmall-sizeditemsthatcan
be placed as close as possible to heat (thermal) energy sources, which can have
temperatures of hundreds of degrees Celsius. It can operate anywhere (including
indoors)andatanytimeoftheday.ThesefactorsaredecisiveforapplyingTEGsto
recoverlow-potentialheat.Therefore,inpracticalapplications,TEG’sstructurewill
be exposed to systematic long-term heavy temperature gradients, mechanical
stresses (thermomechanical stresses), and high temperatures on one (hot) side.
TEGs,andhencethethermoelectricmaterialsforminglegsofthermocouples,must
withstandtheabovementionedshock.
Obviously, only materials based on pressed powders and composites can with-
stand long time in real heavy thermal and mechanical attacks during TEG
exploitation.
v
vi Preface
InTEGs,duetohightemperatures(hundredsofdegreesCelsius)onthehotside
and heavy thermomechanical stresses in module, many processes become active,
leading to a quick or gradual degradation in the performance of the thermoelectric
materials and TEG itself. These degradation processes are, namely, interdiffusion,
recrystallization, alloying, dissolution, phase transitions, phase separation, phase
segregation, sublimation, oxidation, mechanical damage of legs, commutation and
interconnections,andotherphenomena.
Authorsofchapterspresenttheirlookonmodernsolutionsofconsideredproblem
includingmicrostructuralmanipulation(alloying,nanoprecipitatesandstrains,com-
posites,nanoinclusions,multiphaseandall-scalenanocomposites),optimizingcon-
centrationofchargecarriers(deep-leveldoping,dynamicdoping),bandengineering
(band convergence, resonant states, low effective mass, and deformation potential
coefficient), crystal structure defect engineering, potential interface barriers, and
solubilitymanipulation.
To become attractive and affordable to customers, TEGs should have a service
lifeofatleast5000h,withthousandcycleson-off,and,ofcourse,becheapaswell.
Thisbookisanattempttoarrangetheinterchangeofresearchanddevelopment
results concerned with hot topics in TEGs research, development, and production,
including:
1. Trendsintraditionalinorganicmaterials
2. Novelinorganicmaterials
3. Researchresultsininnovativecompositenanomaterials
4. Novel methods and measurement techniques for performance evaluation of
thermoelectricmaterialsandTEGs
5. Thermoelectricpowergeneratorssimulation,modeling,anddesign
Moscow,Russia SergeySkipidarov
MikhailNikitin
Contents
PartI TrendsinTraditionalInorganicMaterials
1 InvestigatingthePerformanceofBismuth-AntimonyTelluride. . . . 3
ZinoviDashevskyandSergeySkipidarov
2 SnSe:BreakthroughorNotBreakthrough?. . . . . . . . . . . . . . . . . . 23
ChristopheCandolfi,DorraIbrahim,Jean-BaptisteVaney,
SelmaSassi,PhilippeMasschelein,AnneDauscher,
andBertrandLenoir
3 TinSulfide:ANewNontoxicEarth-AbundantThermoelectric
Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
HongWu,XuLu,XiaodongHan,andXiaoyuanZhou
4 SnTe-BasedThermoelectrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
WenLi,JingTang,XinyueZhang,andYanzhongPei
5 LeadChalcogenideThermoelectricMaterials. . . . . . . . . . . . . . . . . 83
ShanLi,XinyueZhang,YuchengLan,JunMao,
YanzhongPei,andQianZhang
6 HighThermoelectricPerformanceduetoNanoprecipitation,
BandConvergence,andInterfacePotentialBarrier
inPbTe-PbSe-PbSQuaternaryAlloysandComposites. . . . . . . . . . 105
DiantaGintingandJong-SooRhyee
7 MulticomponentChalcogenideswithDiamond-Like
StructureasThermoelectrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
DanZhang,GuangshengFu,andShufangWang
8 1-2-2LayeredZintl-PhaseThermoelectricMaterials. . . . . . . . . . . . 159
JingShuai,ShanLi,ChenChen,XiaofangLi,JunMao,
andQianZhang
vii
viii Contents
9 Skutterudites:ProgressandChallenges. . . .. . . . . . . .. . . . . . . .. . 177
GerdaRoglandPeterRogl
10 Half-HeuslerThermoelectrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
RanHe,HangtianZhu,andShuoChen
PartII NovelInorganicMaterials
11 Polymer-DerivedCeramics:ANovelInorganic
ThermoelectricMaterialSystem. . . . . . . . . . . . . . . . . . . . . . . . . . . 229
RakeshKrishnamoorthyIyer,AdhimoolamBakthavachalam
Kousaalya,andSrikanthPilla
PartIII PerformanceEvaluationandMeasurementTechniques
12 GrainBoundaryEngineeringforThermalConductivity
ReductioninBulkNanostructuredThermoelectricMaterials. . . . . 255
AdamA.Wilson,PatrickJ.Taylor,DanielS.Choi,
andShashiP.Karna
13 NovelMeasurementsandAnalysisforThermoelectricDevices. . . . 277
PatrickJ.Taylor,AdamA.Wilson,TerryHendricks,
FivosDrymiotis,ObedVillalpando,andJean-PierreFleurial
PartIV DeviceDesign,ModelingandSimulation
14 ModelingandOptimizationofThermoelectricModules
forRadiantHeatRecovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Je-HyeongBahkandKazuakiYazawa
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Part I
Trends in Traditional Inorganic Materials
Chapter 1
Investigating the Performance
of Bismuth-Antimony Telluride
ZinoviDashevskyandSergeySkipidarov
Abstract Weprovidetherationaleforpossiblesignificantimprovingefficiencyof
low-temperature thermoelectric generators (TEGs) based on bismuth-antimony tel-
luride(Bi2Te3)x(Sb2Te3)1(cid:1)xternaryalloys.
It has been shown by experiments that using in TEGs of p-type legs made of
(Bi2Te3)x(Sb2Te3)1(cid:1)x material with orientation alternative to traditional, i.e., when
cleavageplanesoflegsaretransversetoheatfluxdirection,resultsinincreasingin
thermoelectricefficiencybyanaverageof25%inthetemperaturerangefrom100(cid:3)C
to350(cid:3)C.
1.1 Introduction
Development and wide application of thermoelectric generation as user-friendly
directenergyconversiontechnologyarelimitedmainlybytwofactors:
– Relativelylowconversionefficiencyofthermoelectricgenerators(TEGs)
– Limitedresourcesofthermoelectricmaterialsforlarge-scaleproductionofhigh-
performanceTEGsforindustrialapplications
Researchersandengineersfocustheireffortsonsolvingtheseproblemsby:
– Increasing in thermoelectric efficiency Z in a wide range of operating tempera-
tures50–1000(cid:3)C
– Research and development activity and arranging production of novel high-
performance thermoelectric materials consisting of elements which are in abun-
danceontheEarth
Unfortunately, situation with candidates for new high-performance materials is
far from satisfactory: there are some potential effective candidates for using in
mid-temperature range (300–550 (cid:3)C), but there are no currently high-performance
candidates for low-temperature range (below 300 (cid:3)C) which are able to replace
Z.Dashevsky·S.Skipidarov(*)
RusTecLLC,Moscow,Russia
e-mail:[email protected]
©SpringerNatureSwitzerlandAG2019 3
S.Skipidarov,M.Nikitin(eds.),NovelThermoelectricMaterialsandDeviceDesign
Concepts,https://doi.org/10.1007/978-3-030-12057-3_1