Table Of ContentМинистерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное
учреждение высшего образования
«Московский педагогический государственный университет»
С. А. Рябчун
NOTES ON THE ELECTRON-PHONON
INTERACTION
Учебное пособие
МПГУ
Москва • 2017
УДК 537.5(075.8)
ББК 22.373.1я73
Р985
Рецензент:
Г. М. Чулкова, доктор физико-математических наук, профессор
кафедры общей и экспериментальной физики и информационных
технологий МПГУ
Рябчун, Сергей Александрович.
Р985 Notes on the electron-phonon interaction : учебное пособие /
С. А. Рябчун. – Москва : МПГУ, 2017. – 18 с. : 2 ил.
ISBN 978-5-4263-0579-3
These notes are a result of a series of lectures given to the MS and PhD
students of the Department of Physics, Moscow State Pedagogical University.
They deal with the subject of electron-phonon interaction in pure three-
dimensional metals. The goal was to show how one could calculate the
temperature dependence of the electron-phonon-interaction time from first
principles within a simple model. Students wishing to expand their
knowledge of the subject of condensed matter are invited to study any book
on solid-state physics (for example by J.M. Ziman, or N.W. Ashcroft and
N.D. Mermin.
УДК 537.5(075.8)
ББК 22.373.1я73
ISBN 978-5-4263-0579-3 © МПГУ, 2017
© Рябчун С. А., 2017
CONTENTS
Preface ............................................................................................................. 4
1. Lattice vibrations ......................................................................................... 5
2. Phonons ........................................................................................................ 6
3. Electron-phonon interaction ......................................................................... 7
4. Electron-phonon-interaction time .............................................................. 10
4.1. Electron-phonon-interaction time through the transition
probability .................................................................................................. 11
4.2. Electron-phonon-interaction time from the kinetic equation ............... 14
3
Preface
These notes are a result of a series of lectures given to the MS and PhD
students of the Department of Physics, Moscow State Pedagogical University.
They deal with the subject of electron-phonon interaction in pure three-
dimensional metals. The goal was to show how one could calculate the
temperature dependence of the electron-phonon-interaction time from first
principles within a simple model. Students wishing to expand their
knowledge of the subject of condensed matter are invited to study any book
on solid-state physics (for example by J.M. Ziman, or N.W. Ashcroft and
N.D. Mermin.
This course was taught within the project No. 14.B25.31.0007 funded by
the Ministry of Education and Science of the Russian Federation. The
publication of these notes was made possible by the support of the Russian
Science Foundation (project No. 17-72-30036).
4
1. Lattice vibrations
To keep the discussion simple we start with the one-dimensional case of
a continuous system. Let x be the coordinate and ξ(x, t) measure the
displacement of an infinitesimal element of the material located at x from its
equilibrium position. Then we can construct the action
1 (cid:2034)(cid:2022) (cid:2870) 1 (cid:2034)(cid:2022) (cid:2870)
(cid:1845) (cid:3404) (cid:1516)(cid:1856)(cid:1872)(cid:1516)(cid:1856)(cid:1876)(cid:2278);(cid:2278) ≡ (cid:2025)(cid:3436) (cid:3440) (cid:3398) (cid:1851)(cid:3436) (cid:3440) . (1)
2 (cid:2034)(cid:1872) 2 (cid:2034)(cid:1876)
Here ρ is the mass density of the material and Y is the Young modulus. For
small vibrations, which we are considering, these two material parameters are
constant both in space and time, equal to their respective equilibrium values.
The Euler-Lagrange equation reads
(cid:2034) (cid:2034)(cid:2278) (cid:2034) (cid:2034)(cid:2278) (cid:2034)(cid:2278)
(cid:3397) (cid:3404)
(cid:2034)(cid:1872) (cid:2034)(cid:2022) (cid:2034)(cid:1876) (cid:2034)(cid:2022) (cid:2034)(cid:2022) (2)
(cid:2034)(cid:4672) (cid:4673) (cid:2034)(cid:4672) (cid:4673)
(cid:2034)(cid:1872) (cid:2034)(cid:1876)
leading to the wave equation
(cid:2034)(cid:2870)(cid:2022) (cid:2034)(cid:2870)(cid:2022) (cid:1851)
(cid:3398)(cid:1855)(cid:2870) (cid:3404) 0,(cid:1855) ≡ (cid:3496) . (3)
(cid:2034)(cid:1872)(cid:2870) (cid:2034)(cid:1876)(cid:2870) (cid:2025)
Trying a plane-wave solution(cid:2022)(cid:4666)(cid:1876),(cid:1872)(cid:4667) ∼ exp(cid:4670)(cid:3398)(cid:1861)(cid:4666)(cid:2033)(cid:1872)(cid:3398)(cid:1869)(cid:1876)(cid:4667)(cid:4671)produces a dispersion
relation
(cid:2033) (cid:3404) (cid:1855)∣∣(cid:1869)∣∣. (4)
(cid:3044)
The general solution is then a superposition of plane-wave solutions:
(cid:2022)(cid:4666)(cid:1876),(cid:1872)(cid:4667) (cid:3404) (cid:1516)(cid:1856)(cid:1869)(cid:1827) (cid:3427)(cid:1853) (cid:1857)(cid:2879)(cid:3036)(cid:4666)(cid:3104)(cid:3292)(cid:3047)(cid:2879)(cid:3044)(cid:3051)(cid:4667)(cid:3397)(cid:1853)(cid:2993)(cid:1857)(cid:3036)(cid:4666)(cid:3104)(cid:3292)(cid:3047)(cid:2879)(cid:3044)(cid:3051)(cid:4667)(cid:3431), (5)
(cid:3044) (cid:3044) (cid:3044)
where a are arbitrary coefficients and the overall factor A will be
q q
determined presently.
To quantise the system, first, define the canonical momentum
(cid:2034)(cid:2278) (cid:2034)(cid:2022)
(cid:2024)(cid:4666)(cid:1876),(cid:1872)(cid:4667) ≡ (cid:3404) (cid:2025) (cid:3404) (cid:3398)(cid:1861)(cid:2025)(cid:1516)(cid:1856)(cid:1869)(cid:1827) (cid:2033) (cid:3427)(cid:1853) (cid:1857)(cid:2879)(cid:3036)(cid:4666)(cid:3104)(cid:3292)(cid:3047)(cid:2879)(cid:3044)(cid:3051)(cid:4667)(cid:3398)(cid:1853)(cid:2993)(cid:1857)(cid:3036)(cid:4666)(cid:3104)(cid:3292)(cid:3047)(cid:2879)(cid:3044)(cid:3051)(cid:4667)(cid:3431)
(cid:2034)(cid:2022) (cid:2034)(cid:1872) (cid:3044) (cid:3044) (cid:3044) (cid:3044) (6)
(cid:2034)(cid:4672) (cid:4673)
(cid:2034)(cid:1872)
and then construct the Hamiltonian
(cid:2034)(cid:2022) (cid:2024)(cid:2870) 1 (cid:2034)(cid:2022) (cid:2870)
(cid:1834) (cid:3404) (cid:1516)(cid:1856)(cid:1876)(cid:3428)(cid:2024) (cid:3398)(cid:2278)(cid:3432) (cid:3404) (cid:1516)(cid:1856)(cid:1876)(cid:4680) (cid:3397) (cid:1851)(cid:3436) (cid:3440) (cid:4681). (7)
(cid:2034)(cid:1872) 2(cid:2025) 2 (cid:2034)(cid:1876)
It is convenient in (5) and (6) to merge the time-dependent phase factors
exp(±iω t) with their respective coefficients(cid:1853) and (cid:1853)(cid:2993)and also change the sign
q (cid:3044) (cid:3044)
on q in the second term in the brackets, so that the expressions for the
coordinate ξ and momentum π assume more compact forms:
5
С. А. Рябчун
(cid:2022)(cid:4666)(cid:1876),(cid:1872)(cid:4667) (cid:3404) (cid:1516)(cid:1856)(cid:1869)(cid:1827) (cid:4670)(cid:1853) (cid:4666)(cid:1872)(cid:4667)(cid:3397)(cid:1853)(cid:2993) (cid:4666)(cid:1872)(cid:4667)(cid:4671)(cid:1857)(cid:3036)(cid:3044)(cid:3051),
(cid:3044) (cid:3044) (cid:2879)(cid:3044)
(8)
(cid:2024)(cid:4666)(cid:1876),(cid:1872)(cid:4667) (cid:3404) (cid:3398)(cid:1861)(cid:2025)(cid:1516)(cid:1856)(cid:1869)(cid:1827) (cid:2033) (cid:4670)(cid:1853) (cid:4666)(cid:1872)(cid:4667)(cid:3398)(cid:1853)(cid:2993) (cid:4666)(cid:1872)(cid:4667)(cid:4671)(cid:1857)(cid:3036)(cid:3044)(cid:3051),
(cid:3044) (cid:3044) (cid:3044) (cid:2879)(cid:3044)
where we have explicitly shown the time dependence of the coefficients. We
now declare ξ and π, and also(cid:1853) and (cid:1853)(cid:2993)operators, and impose equal-time
(cid:3044) (cid:3044)
commutation relations
(cid:4670)(cid:2022)(cid:4666)(cid:1876),(cid:1872)(cid:4667),(cid:2024)(cid:4666)(cid:1876)′,(cid:1872)(cid:4667)(cid:4671) (cid:3404) (cid:1861)(cid:1328)(cid:2012)(cid:4666)(cid:1876)(cid:3398)(cid:1876)′(cid:4667),
(9)
(cid:2993)
(cid:4670)(cid:1853) (cid:4666)(cid:1872)(cid:4667),(cid:1853) (cid:4666)(cid:1872)(cid:4667)(cid:4671) (cid:3404) (cid:2012) .
(cid:3044) (cid:3044)(cid:4593) (cid:3044)(cid:3044)(cid:4593)
It is left as an exercise to the reader to show that these commutation relations
are consistent if we take (cid:1827) (cid:3404) (cid:2869)(cid:3495) (cid:1328) .
(cid:3044)
(cid:2870) (cid:3095)(cid:3096)(cid:3104)(cid:3292)
Thus we get
(cid:1856)(cid:1869) (cid:1328)
(cid:2022)(cid:4666)(cid:1876),(cid:1872)(cid:4667) (cid:3404) (cid:1516) (cid:3496) (cid:4666)(cid:1853) (cid:3397)(cid:1853)(cid:2993) (cid:4667)(cid:1857)(cid:3036)(cid:3044)(cid:3051),
√2(cid:2024) 2(cid:2033)(cid:3044)(cid:2025) (cid:3044) (cid:2879)(cid:3044)
(10)
(cid:1856)(cid:1869) (cid:2025)(cid:1328)(cid:2033)
(cid:2024)(cid:4666)(cid:1876),(cid:1872)(cid:4667) (cid:3404) (cid:1516) (cid:4666)(cid:3398)(cid:1861)(cid:4667)(cid:3496) (cid:3044)(cid:4666)(cid:1853) (cid:3398)(cid:1853)(cid:2993) (cid:4667)(cid:1857)(cid:3036)(cid:3044)(cid:3051).
√2(cid:2024) 2 (cid:3044) (cid:2879)(cid:3044)
Here we have suppressed the explicit time dependence of the operators. If we
now insert these expressions for the displacement and the momentum into the
Hamiltonian (7), we shall get after the normal ordering procedure
(11)
(cid:1834) (cid:3404) (cid:1516)(cid:1856)(cid:1869)(cid:1328)(cid:2033) (cid:1853)(cid:2993)(cid:1853) .
(cid:3044) (cid:3044) (cid:3044)
2. Phonons
The Hamiltonian (11) is identical to the Hamiltonian of the simple
harmonic oscillator, except for the zero-energy term which we have removed
by the procedure of normal ordering. Its eigenstates can be built up as
follows. Starting with the vacuum state, we allow the creation operators to act
on it to produce any desired number of excitations:
6
NOTES ON THE ELECTRON-PHONON INTERACTION
(cid:4666)(cid:1853)(cid:2993)(cid:4667)(cid:3041)(cid:3292) (cid:4666)(cid:1853)(cid:2993)(cid:4667)(cid:3041)(cid:3292)(cid:4666)(cid:1853)(cid:2993)(cid:4667)(cid:3041)(cid:3291)...
(cid:1853)(cid:2993)∣0〉 (cid:3404) ∣∣(cid:1866) (cid:3404) 1〉,∣∣(cid:1866) 〉 (cid:3404) (cid:3044) ,∣∣(cid:1866) ,(cid:1866) ,...〉 (cid:3404) (cid:3044) (cid:3043) . (12)
(cid:3044) (cid:3044) (cid:3044) (cid:3044) (cid:3043)
(cid:3493)(cid:1866) ! (cid:3493)(cid:1866) !(cid:1866) !...
(cid:3044) (cid:3044) (cid:3043)
Within the context of the lattice vibrations these excitations are called
phonons. Thus in the last state of (12) there are n phonons of type q, n
q p
phonons of type p etc.
In the simplest case of a three-dimensional lattice we have atoms
arranged in a regular pattern. Let R mark the position of a particular atom in
equilibrium. Then the equations (10) should be modified accordingly:
(cid:1856)(cid:2871)q (cid:1328)
(cid:2022)(cid:4666)(cid:1844),(cid:1872)(cid:4667) (cid:3404) (cid:3535)(cid:1516) e(cid:3548) (cid:3496) (cid:4666)(cid:1853) (cid:3397)(cid:1853)(cid:2993) (cid:4667)(cid:1857)(cid:3036)q⋅R,
(cid:4666)2(cid:2024)(cid:4667)(cid:2871)⁄(cid:2870) q, s 2(cid:2033) (cid:2025) q, s (cid:2879)q, s
q, s
s (13)
(cid:1856)(cid:2871)q (cid:2025)(cid:1328)(cid:2033)
(cid:2024)(cid:4666)(cid:1844),(cid:1872)(cid:4667) (cid:3404) (cid:3535)(cid:1516) (cid:4666)(cid:3398)(cid:1861)(cid:4667)e(cid:3548) (cid:3496) q, s(cid:4666)(cid:1853) (cid:3398)(cid:1853)(cid:2993) (cid:4667)(cid:1857)(cid:3036)q⋅R,
(cid:4666)2(cid:2024)(cid:4667)(cid:2871)⁄(cid:2870) q, s 2 q, s (cid:2879)q, s
s
where s is the polarisation index, ande(cid:3548) is the unit vector in the direction of
q, s
the displacement of the q-th mode of polarisation s.
3. Electron-phonon interaction
The potential energy of an electron located at position x because of the
presence of ions at shifted positions R + ξ(R, t) can be written as follows:
P.E.(cid:4666)x(cid:4667) (cid:3404) (cid:3533)(cid:1848)(cid:4666)x(cid:3398)R(cid:3398)(cid:2022)(cid:4667) (cid:3406) (cid:3533)(cid:1848)(cid:4666)x(cid:3398)R(cid:4667)(cid:3398)(cid:2022)⋅(cid:2008)(cid:3533)(cid:1848)(cid:4666)x(cid:3398)R(cid:4667).
(14)
R R R
The first term is the potential energy of the electron in the static lattice. It is
responsible for the band structure and of no interest here. The second one
describes interaction of the electron with the vibrations of the lattice, i.e.
electron-phonon interaction. So, we can immediately write down the
Hamiltonian of the electron-phonon interaction
(cid:1834) (cid:3404) (cid:1516)(cid:1856)(cid:2871)x(cid:2032)(cid:2993)(cid:4666)x(cid:4667)(cid:3429)(cid:3398)(cid:2022)⋅(cid:2008)(cid:3533)(cid:1848)(cid:4666)x(cid:3398)R(cid:4667)(cid:3433)(cid:2032)(cid:4666)x(cid:4667) ≡ (cid:1516)(cid:1856)(cid:2871)x(cid:2032)(cid:2993)(cid:4666)x(cid:4667)(cid:1848) (cid:4666)x(cid:4667)(cid:2032)(cid:4666)x(cid:4667), (15)
e-ph e-ph
R
where(cid:2032)(cid:2993)(cid:4666)x(cid:4667)and(cid:2032)(cid:4666)x(cid:4667)are operators creating or destroying an electron at a
position x, respectively. To proceed further it is more convenient to go over to
the momentum representation:
7
С. А. Рябчун
(cid:1834) (cid:3404) (cid:3533)〈k ∣ (cid:1848) ∣ k'〉(cid:1855)(cid:2993)(cid:1855) .
e-ph e-ph k k' (16)
k, k'
We approximate the state of the electron with a definite momentum with a
plane wave, upon which the matrix element〈k ∣ (cid:1848) ∣ k'〉is the Fourier transform
e-ph
of the potential energy describing the electron-phonon interaction.
We have
〈k ∣ (cid:1848) ∣ k'〉 (cid:3404) (cid:1516)(cid:1856)(cid:2871)x(cid:1857)(cid:3036)(cid:4666)k(cid:2879)k'(cid:4667)⋅x(cid:3429)(cid:3398)(cid:3533)(cid:2248)(cid:4666)R,(cid:1872)(cid:4667)⋅(cid:2008)(cid:1848)(cid:4666)x(cid:3398)R(cid:4667)(cid:3433)
e-ph
R
(cid:3404) (cid:3398)(cid:3533)(cid:2248)(cid:4666)R,(cid:1872)(cid:4667)⋅(cid:1516)(cid:1856)(cid:2871)x(cid:1857)(cid:3036)(cid:4666)k(cid:2879)k'(cid:4667)⋅x(cid:2008)(cid:1848)(cid:4666)x(cid:3398)R(cid:4667)
R
(cid:3404) (cid:3398)(cid:3533)(cid:2248)(cid:4666)R,(cid:1872)(cid:4667)⋅(cid:4670)(cid:1516)(cid:1856)(cid:2871)x(cid:2008)(cid:1857)(cid:3036)(cid:4666)k(cid:2879)k'(cid:4667)⋅x(cid:1848)(cid:4666)x(cid:3398)R(cid:4667)
R
(cid:3398)(cid:1861)(cid:4666)k(cid:3398)k'(cid:4667)(cid:1516)(cid:1856)(cid:2871)x(cid:1857)(cid:3036)(cid:4666)k(cid:2879)k'(cid:4667)⋅x(cid:1848)(cid:4666)x(cid:3398)R(cid:4667)(cid:4671)
(17)
(cid:3404) (cid:3398)(cid:3533)(cid:2248)(cid:4666)R,(cid:1872)(cid:4667)⋅(cid:4670)∮(cid:1856)S(cid:1857)(cid:3036)(cid:4666)k(cid:2879)k'(cid:4667)⋅x(cid:1848)(cid:4666)x(cid:3398)R(cid:4667)
R
(cid:3398)(cid:1861)(cid:4666)k(cid:3398)k'(cid:4667)(cid:1516)(cid:1856)(cid:2871)x(cid:1857)(cid:3036)(cid:4666)k(cid:2879)k'(cid:4667)⋅x(cid:1848)(cid:4666)x(cid:3398)R(cid:4667)(cid:4671)
(cid:3404) (cid:1861)(cid:4666)k(cid:3398)k'(cid:4667)⋅(cid:3533)(cid:2248)(cid:4666)R,(cid:1872)(cid:4667)(cid:1516)(cid:1856)(cid:2871)x(cid:1857)(cid:3036)(cid:4666)k(cid:2879)k'(cid:4667)⋅x(cid:1848)(cid:4666)x(cid:3398)R(cid:4667)
R
(cid:3404) (cid:1861)(cid:4666)k(cid:3398)k'(cid:4667)⋅(cid:3533)(cid:2248)(cid:4666)R,(cid:1872)(cid:4667)(cid:1857)(cid:3036)(cid:4666)k(cid:2879)k'(cid:4667)⋅R(cid:1516)(cid:1856)(cid:2871)x(cid:1857)(cid:3036)(cid:4666)k(cid:2879)k'(cid:4667)⋅x(cid:1848)(cid:4666)x(cid:4667)
R
In calculating the matrix element we have integrated by parts and used
periodic boundary conditions to eliminate the surface integral, and to go to
the last line we have changed the variables. Thus we need to compute the
Fourier transform of the potential energy of an electron in a lattice.
The potential that an electron feels is created by ions with charges Ze
and by the other electrons. The potential of an ion with charge Ze surrounded
by electrons satisfies the Poisson equation
(cid:1856)(cid:2871)k
(cid:2008)(cid:2870)(cid:2004)(cid:4666)x(cid:4667) (cid:3404) (cid:3398)4(cid:2024)(cid:2025)(cid:4666)x(cid:4667) (cid:3404) 4(cid:2024)(cid:1852)(cid:1857)(cid:2012)(cid:4666)x(cid:4667)(cid:3398)4(cid:2024)(cid:1857)(cid:1516) (cid:1858)(cid:4666)(cid:2035) ,(cid:2004)(cid:4666)x(cid:4667)(cid:4667), (18)
(cid:4666)2(cid:2024)(cid:4667)(cid:2871) k
where
1
(cid:1858)(cid:4666)(cid:2035) ,(cid:2004)(cid:4666)x(cid:4667)(cid:4667) (cid:3404)
k (cid:2035) (cid:3398)(cid:2020)(cid:3398)(cid:1857)(cid:2004)(cid:4666)x(cid:4667) (19)
exp(cid:3428) k (cid:3432)
(cid:1846)
is the distribution function of the electrons in the presence of a potential. If
the potential is not too large, the distribution function can be expanded:
(cid:2034)(cid:1858)
(cid:2868)
(cid:1858)(cid:4666)(cid:2035) ,(cid:2004)(cid:4666)x(cid:4667)(cid:4667) (cid:3406) (cid:1858) (cid:4666)(cid:2035) (cid:4667)(cid:3397)(cid:1857)(cid:2004)(cid:4666)x(cid:4667) , (20)
k (cid:2868) k (cid:2034)(cid:2035)
k
where(cid:1858) (cid:4666)(cid:2035) (cid:4667)is the usual Fermi distribution function. Putting the expansion (20)
(cid:2868) k
into (18) we obtain
8
NOTES ON THE ELECTRON-PHONON INTERACTION
(cid:1856)(cid:2871)k (cid:2034)(cid:1858)
(cid:2008)(cid:2870)(cid:2004)(cid:4666)x(cid:4667) (cid:3404) 4(cid:2024)(cid:1852)(cid:1857)(cid:2012)(cid:4666)x(cid:4667)(cid:3398)4(cid:2024)(cid:1857)(cid:1516) (cid:1858) (cid:4666)(cid:2035) (cid:4667)(cid:3397)4(cid:2024)(cid:1857)(cid:2870)(cid:1516)(cid:1856)(cid:2035)(cid:1830)(cid:4666)(cid:2035)(cid:4667) (cid:2868)
(cid:4666)2(cid:2024)(cid:4667)(cid:2871) (cid:2868) k (cid:2034)(cid:2035) (21)
(cid:3404) 4(cid:2024)(cid:1852)(cid:1857)(cid:2012)(cid:4666)x(cid:4667)(cid:3398)4(cid:2024)(cid:1857)(cid:1866) (cid:3398)4(cid:2024)(cid:1857)(cid:2870)(cid:1830)(cid:4666)(cid:2020)(cid:4667)(cid:2004)(cid:4666)x(cid:4667),
(cid:2868)
where we have introduced the number density n of the electrons in the
0
absence of a potential, the density of states(cid:1830)(cid:4666)(cid:2035)(cid:4667)and used the fact that at low
temperatures (which we consider here) the derivative of the Fermi
distribution function with respect to the energy is very closely equal to the
Dirac delta-function centred at the chemical potential. The uniform charge
distribution with the density en does not produce any physically reasonable
0
potential (the one that goes to zero at infinity). Besides, it is of no interest to
our problem. What we should essentially like to find is the potential of a
“dressed” ion, i.e. the ion that is surrounded by a cloud of electrons initially
uniform. It is reasonable to assume that the potential is spherically symmetric;
therefore we the Poisson equation we need to solve is
1 (cid:1856)(cid:2870)
(cid:4670)(cid:1870)(cid:2004)(cid:4666)(cid:1870)(cid:4667)(cid:4671) (cid:3404) 4(cid:2024)(cid:1852)(cid:1857)(cid:2012)(cid:4666)x(cid:4667)(cid:3398)4(cid:2024)(cid:1857)(cid:2870)(cid:1830)(cid:4666)(cid:2020)(cid:4667)(cid:2004)(cid:4666)(cid:1870)(cid:4667), (22)
(cid:1870)(cid:1856)(cid:1870)(cid:2870)
which forx (cid:3405) 0simplifies to
1 (cid:1856)(cid:2870)
(cid:4670)(cid:1870)(cid:2004)(cid:4666)(cid:1870)(cid:4667)(cid:4671) (cid:3404) (cid:3398)4(cid:2024)(cid:1857)(cid:2870)(cid:1830)(cid:4666)(cid:2020)(cid:4667)(cid:2004)(cid:4666)(cid:1870)(cid:4667) (23)
(cid:1870)(cid:1856)(cid:1870)(cid:2870)
with the solution
(cid:1829)
(cid:2004)(cid:4666)(cid:1870)(cid:4667) (cid:3404) exp(cid:4666)(cid:3398)(cid:1870)⁄(cid:1870) (cid:4667), (24)
(cid:1870) (cid:2868)
where the constant C will be determined shortly, and the characteristic length-
scale r is equal to
0
1
(cid:1870)(cid:2868) (cid:3404) . (25)
(cid:3493)4(cid:2024)(cid:1857)(cid:2870)(cid:1830)(cid:4666)(cid:2020)(cid:4667)
This characteristic length-scale is of the order of 10-8 cm, roughly the inter-
atomic distance in metals. The constant C can be determined if we note that at
small r the term with the delta-function dominates, and we need to find the
potential of a point charge Ze. Finally, the solution to (22) is
(cid:1852)(cid:1857)
(cid:2004)(cid:4666)(cid:1870)(cid:4667) (cid:3404) exp(cid:4666)(cid:3398)(cid:1870)⁄(cid:1870) (cid:4667), (26)
(cid:1870) (cid:2868)
Thus, the Fourier transform of the screened Coulomb potential that
enters the matrix element of the electron-phonon Hamiltonian is
4(cid:2024)(cid:1852)(cid:1857)(cid:2870)
F.T.(cid:4668)(cid:1848)(cid:4666)x(cid:4667)(cid:4669) (cid:3404) . (27)
(cid:4666)k(cid:3398)k'(cid:4667)(cid:2870)(cid:3397)(cid:1870)(cid:2879)(cid:2870)
(cid:2868)
The matrix element itself is equal to
9
С. А. Рябчун
4(cid:2024)(cid:1852)(cid:1857)(cid:2870)
〈k ∣ (cid:1848) (cid:4666)x(cid:4667) ∣ k'〉 (cid:3404) (cid:1861)(cid:4666)k'(cid:3398)k(cid:4667)⋅(cid:3533)(cid:2022)(cid:4666)R(cid:4667)(cid:1857)(cid:3036)(cid:4666)k'(cid:2879)k(cid:4667)⋅R
e-ph (cid:4666)k(cid:3398)k'(cid:4667)(cid:2870)(cid:3397)(cid:1870)(cid:2879)(cid:2870)
(cid:2868)
R
(cid:1856)(cid:2871)q 4(cid:2024)(cid:1852)(cid:1857)(cid:2870)
(cid:3404) (cid:1861)(cid:1516) (cid:3429)(cid:3533)(cid:1857)(cid:3036)(cid:4666)k'(cid:2879)k(cid:2878)q(cid:4667)⋅R(cid:3433)
(cid:4666)2(cid:2024)(cid:4667)(cid:2871)⁄(cid:2870) (cid:4666)k(cid:3398)k'(cid:4667)(cid:2870)(cid:3397)(cid:1870)(cid:2879)(cid:2870) (28)
(cid:2868)
R
(cid:1328)
(cid:3400)(cid:3533)(cid:4666)k'(cid:3398)k(cid:4667)⋅e(cid:3548) (cid:3496) (cid:4666)(cid:1853) (cid:3397)(cid:1853)(cid:2993) (cid:4667).
q, s 2(cid:2025)(cid:2033) q, s -q, s
q, s
s
Because we are dealing with a lattice, the sum in the square brackets is only
non-zero if k' (cid:3404) k(cid:3398)q(cid:1865)(cid:1867)(cid:1856)G,where G is a reciprocal-lattice vector:
(cid:3533)(cid:1857)(cid:3036)(cid:4666)k'(cid:2879)k(cid:2878)q(cid:4667)⋅R (cid:3404) (cid:1840)(cid:2012) ,
k', k - q + G (29)
R
where N is the number of primitive cells (equal to the number of ions since
we are dealing with a Bravais lattice).
As one can observe by examining the matrix element of the electron-
phonon interaction, electrons in our model are only coupled to longitudinal
phonons. This can be understood by noting that only longitudinal waves lead
to density variations and thus to variations of the positive-charge density. We
can now write down the Hamitonian of the electron-phonon interaction:
(cid:2993) (cid:2993)
(cid:1834) (cid:3404) (cid:3533) (cid:1839) (cid:4666)(cid:1853) (cid:3397)(cid:1853) (cid:4667)(cid:1855) (cid:1855) (cid:2012) ,
e-ph k, k' q (cid:2879)q k k' k', k - q + G
k, k', q, G
(30)
(cid:1328) 4(cid:2024)(cid:1852)(cid:1857)(cid:2870)
(cid:1839) (cid:3404) (cid:1861)(cid:1840)(cid:3496) (cid:4666)(cid:1863)′(cid:3398)(cid:1863)(cid:4667)⋅e(cid:3548) .
k, k' 2(cid:2025)(cid:2033) (cid:4666)k(cid:3398)k'(cid:4667)(cid:2870)(cid:3397)(cid:1870)(cid:2879)(cid:2870) k'(cid:2879)k
k(cid:2879)k' (cid:2868)
4. Electron-phonon-interaction time
To proceed further we make the assumption that at sufficiently low
temperature we can neglect Lapp processes. This is reasonable since at low
temperatures an electron cannot have its momentum changed so that it ends
up in a neighbouring Brillouin zone. This allows us to simplify the
Hamiltonian (30):
10