ebook img

Non-Abelian Monopoles in the Higgs Phase PDF

33 Pages·2011·17.57 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-Abelian Monopoles in the Higgs Phase

Non-Abelian Monopoles in the Higgs Phase Muneto Nitta and Walter Vinci arXiv: 1012.4057; Nucl.Phys.B848:121-154,2011 Walter Vinci Research Fellow University of Minnesota Outline Introduction-Overview Coulomb Phase Non-Abelian monopoles Moduli spaces (Rational Maps) Higgs Phase Non-Abelian vortices and kinks Moduli spaces (Moduli Matrix) Kinks Monopoles ⇔ Non-Abelian” Monopoles and Kinks “ Moduli Matrix for Monopoles Motivations Non-Perturbative Dynamics of Gauge Field Theories Monopoles and Vortices Dual superconductivity model of confinement Nambu-‘t Hooft-Mandelstam Supersymmetric Gauge Theories Reliable control of strong coupling effects Seiberg-Witten Confinement, dualities String/Field theory interplay: D-branes/domain walls, strings/vortices, wall/vortex junction Monopoles in the Coulomb Phase Non-Abelian Monopoles Montonen, Olive, Weinberg et al. SU(N) Gauge theory: 1 1 2 2 = Tr (F ) + D Φ µν µ L 2g2 g2 | | ￿ ￿ µ . . . 0 1 N . . . 2 Φ = v/N, Φ = . . . , µ = 0  . . .  i | | ⇒ ∞ ∞ i=1 0 . . . µ ￿ N     SU (N ) Abelian case: all eigenvalues N 1 N 1 π = π (U (1) ) = . Z 2 1 − − U (1)N 1 are different − ￿ ￿ SU (N ) Non-Abelian case: some q 1 π = Z 2 − eigenvalues coincide S(U (n ) U (n ) U (n )) 1 2 q ￿ × · · · × ￿ Monopoles in the Coulomb Phase Non-Abelian Monopoles Bogomol’nyi completion: 1 1 3 2 E = d x Tr (￿ F D Φ) + ∂ (￿ ΦF ) ijk jk i i ijk jk 4g2 − g2 ￿ ￿ ￿ Topological term Bogomol’nyi equations: D Φ = ￿ F i ijk jk Monopoles in the Coulomb Phase Moduli Spaces (A , Φ) satisfying BPS equations and boundary conditions i (x) G : (0 , 0, x ) 1 , x . 0 0 3 3 G ∈ G → → ∞ SU(2) 3 1 = (A , Φ) / = S R framed i 0 framed M G M × Nham transorm, Spectral curves, Twistors, Rational maps... Monopoles in the Coulomb Phase Rational Map Construction Scattering data of the Hitchin equation along x 3 Donaldson ψ = (D + Φ)ψ = 0 H 3 ∇ µ 0 Φ = SU(2) case 0 µ ∞ ￿ − ￿ 0 m/g µ x ψ(x ) x e 3 x + 3 3 − 3 ∼ 1 | | → ∞ ￿ ￿ 1 0 m/g µ x m/g µ x x ψ(x ) b x e 3 + a x e 3 3 3 3 3 − −∞ ← ∼ 0 | | 1 | | ￿ ￿ ￿ ￿ [D , ] = 0 D ψ ∂ ψ = ∂ ψ = 0 z¯ H z¯ H z¯ H H z¯ ∇ ∇ ∼ ∇ ∇ a a(z), b b(z) Holomorphic functions → → Monopoles in the Coulomb Phase Rational Map Construction SU(2) Case: m 1 b(z) q z + + q 1 − m R (z) = · · · m ≡ a(z) zm + p zm 1 + + p 1 − m · · · m : Monopole charge Holomorphic (based) rational map to the projective complex line SU (2) 1 1 1 R : P P P = C C C m → U (1) R = (a(z), b(z)) m α 1 R = Fundamental SU(2) monopole : α = 0 i z z ￿ 0 − SU(2),k=1 3 1 = (z ) (α) S C C R 0 ∗ framed M × ￿ × Monopoles in the Coulomb Phase Rational Map Construction Jarvis General case: flag manifolds 1 R(z) : P lag C F n ,...,n → 1 q SU (N ) lag = F n ,...,n 1 q S(U (n ) U (n )) 1 q × · · · × Monopoles in the Coulomb Phase

Description:
Higgs Phase. Walter Vinci. Research Fellow. University of Minnesota. Muneto Nitta and Walter Vinci. arXiv: 1012.4057; Nucl.Phys.B848:121-154,2011
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.