Table Of ContentAIAA 2017-1081
AIAA SciTech Forum
9 - 13 January 2017, Grapevine, Texas
AIAA Modeling and Simulation Technologies Conference
Refinement of Objective Motion Cueing Criteria Based on
Three Flight Tasks
PeterM.T.Zaal∗ Jeffery A.Schroeder† WilliamW. Chung‡
SanJoseStateUniversity FederalAviationAdministration ScienceApplicationsInternational
NASAAmesResearchCenter MoffettField,CA Corporation
MoffettField,CA NASAAmesResearchCenter
MoffettField,CA
1
8
0
1
7-
1
20 Thispaperaimstorefineobjectivemotioncueingcriteriadevelopedinapreviousexperimentforthesim-
6.
4/ ulatormotionsystemdiagnostictestspecifiedbytheInternationalCivilAviationOrganization.Fifteenairline
1
25 transportpilotsflewthesamethreetasksasinthepreviousexperimentintheNASAVerticalMotionSimu-
0.
DOI: 1 lraetgoironunbdetewreseinxtdhifefemreontitonmfiotdieolnitycounnficgeurtraaitniotynsb.oTunhdeasriyxfdoiuffnedreinnttmheoptiroenvicoounsfiegxupreartiimonesntcoavnedretdhethmeemanotmioon-
g | tionresponseofastatisticalsampleofeightrepresentativehexapodmotionsimulators. Themotioncondition
or
a. significantlyaffected1)rolldeviationsintheapproachtoastallandmaximumpitchrateinastallrecovery,
a
c.ai and2)headingdeviationandpedalreactiontimeafteranenginefailureinthetakeofftask.Significantdiffer-
p://ar encesinpilot-vehicleperformancewereusedtodevelopnewobjectivemotioncueingcriteriaboundariesfor
htt themainmotionresponses. Inaddition,perceptionthresholdsoffalsemotioncueswereusedtodevelopmo-
7 | tioncueingcriteriaforthecross-couplingmotionresponses.Thefidelityboundariesofthecurrentexperiment
1
20 shouldbeusedwithcautionwhenreducingtheuncertaintyoftheinitialfidelityboundariesdevelopedinthe
y 1, previousexperiment,astheydonotfullyoverlap.Datacollectedinthecurrentstudywilladdtodatafromthe
uar nextexperiment,whichaimstofurtherrefineandoptimizetheobjectivemotioncriteriafoundtodate.
br
e
F
n
o
R Nomenclature
E
T
N
E
H C AFS analoguefidelityscale,% x,y,z surge,sway,heave
RC fx,fy,fz surge,sway,heavespecificforce,ft/s2 ∆xtd longitudinaltouchdowndeviation
EA g gravitationalacceleration,ft/s2 ofmaingear,ft
S
RE H OMCTfrequencyresponse ∆y lateraltouchdowndeviationofmaingear,ft
MES h˙td sinkrateofmaingearattouchdown,ft/s ω td frequency,rad/s
A
A N1 enginefanspeed,%
S
A N numberofstickshakers
N s
by p,q,r roll,pitch,yawrate,deg/s Abbreviations
ded qmax maximumpitchrate,rad/s
nloa RMSgs RMSofglideslopedeviation,dot CAVU ceilingandvisibilityunlimited
w FL flightlevel
o RMS RMSofindicatedairspeeddeviation,kts
D V
GS glideslope
RMS RMSofrolldeviation,deg
φ
LOC localizer
RMS RMSofheadingdeviation,deg
ψ
OMCT ObjectiveMotionCueingTest
t pedal-responsetime,s
p
RMS rootmeansquare
V2 takeoffsafetyspeed,kts
RWY runway
V rotationspeed,kts
r
VMS VerticalMotionSimulator
V referencespeed,kts
ref
∗ResearchAssociate,HumanSystemsIntegrationDivision,NASAAmesResearchCenter,MoffettField,CA,94035;[email protected].
Member.
†Chief Scientific and Technical Advisor for Flight Simulation Systems, Federal Aviation Administration, Moffett Field, CA, 94035; jef-
[email protected].
‡SimulationEngineer,SimulationLaboratories,NASAAmesResearchCenter,MoffettField,CA,94035;[email protected]. Senior
Member.
1of20
AmericanInstituteofAeronauticsandAstronautics
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
I. Introduction
Theobjectiveofthispaperistorefineobjectivemotioncueingcriteriaforcommercialtransportsimulatorsbased
onpilots’performanceinthreeflyingtasks.Actuatorhardwareandsoftwarealgorithmsdeterminemotioncues.Today,
duringasimulatorqualification,engineersobjectivelyevaluateonlythehardware.1 Pilotinspectorssubjectivelyassess
the overall motion cueing system (i.e., hardware plus software); however, it is acknowledged that pinpointing any
deficienciesthatmightarisetoeitherhardwareorsoftwareischallenging.ICAO9625hasanObjectiveMotionCueing
Test(OMCT),whichisnowarequiredtestintheFAAspart60regulationsfornewdevices,evaluatingthesoftware
and hardwaretogether; however,it lacksaccompanyingfidelity criteria.1,2 Hosman hasdocumentedOMCT results
forastatisticalsampleofeightsimulators,3 whichisuseful,buthavingvalidatedcriteriawouldbeanimprovement.
Inapreviousexperiment,wedevelopedinitialobjectivemotioncueingcriteriathatthispaperistryingtorefine.
Sinacorisuggested simple criteria,4,5 which are in reasonable agreementwith much of the literature.6–15 These
criteriaoftennecessitatemotiondisplacementsgreaterthanmosttrainingsimulatorscanprovide. Whilesomeofthe
previousworkhasusedtransportaircraftintheirstudies,themajorityusedfighteraircraftorhelicopters.6–11 Thosethat
1 used transportaircraftconsidereddegradedflight characteristics.12–15 As a result, earlier criteria lean moretowards
8
0
1 being sufficient, rather than necessary, criteria for typical transport aircraft training applications. Considering the
7-
1
0 prevalenceof60-inch,six-leggedhexapodtrainingsimulators,arelevantquestionis“whatarethenecessarycriteria
2
4/6. thatcanbeusedwiththeICAO9625diagnostic?”
1
25 Thisstudyaddstotheliteratureasfollows.First,itexamineswell-behavedtransportaircraftcharacteristics,butin
0.
OI: 1 threechallengingtasks. Thetasksareequivalenttotheonesusedinourpreviousexperiment,allowingustodirectly
D comparetheresultsandaddtothepreviousdata. Second,itusestheVerticalMotionSimulator(VMS),theworld’s
org | largestverticaldisplacementsimulator. Thisallowsinclusionofrelativelylargemotionconditions,muchlargerthan
aa. atypicaltrainingsimulatorcanprovide. Sixnewmotionconfigurationswereusedthatexplorethemotionresponses
ai
arc. between the initial objective motion cueing boundaries found in a previous experiment and what current hexapod
p:// simulatorstypicallyprovide.Finally,asufficientlylargepilotpooladdedstatisticalreliabilitytotheresults.
htt
7 |
1
0
2 II. FlightTasks
1,
y
ar
u
br The goalof the currentstudy was to refine the objectivemotioncueing criteria based on pilots’ performancein
e
n F three flight tasks developed in the previous study, discussed in Ref. 16. For this reason, the current study had the
o
R samethreeflighttasksasthepreviousstudywithsomeminorimprovements: anapproachandlandingwithsidestep
E
T
N maneuver,ahigh-altitudestallrecovery,andanengine-outaftertakeoff. Theassumptionwasthatvaryingthemotion
E
C cueswouldaffecthowpilotsperformthesechallengingtasks. Fig.1showstheflightcardsforthethreetasks,which
H
RC thefollowingsectionsdescribe.
A
E
S
E
R II.A. ApproachandLandingwithSidestep
S
E
M
A This task began at an altitude of 1,250 ft on a -3 deg glideslope approach to RWY 28R at San Francisco Inter-
A
S national Airport. Moderate turbulence, simulated using the Dryden turbulence model, existed throughout.17 After
A
y N breakingoutofthecloudceilingat1,100ft,airtrafficcontrolinstructedthepilotstosidesteptoRWY28L.Pilotstried
b
d tomaintaina-3degglideslopeduringtheapproachfollowedbylandingwithina750-ft-longand28-ft-wideboxwith
e
d
oa asinkrateof6ft/sorless. Anaudiocall-outbeganatamaingearheightoffiftyfeetandrepeatedindecrementsof10
nl
w ftuntiltouchdown.AnoverviewoftherunwayconfigurationanddefinitionofthetouchdownboxisgiveninFig.2.
o
D
Thistaskevaluatedifchangesinmotioncuesaffect1)lateral-directionalcontrolinthesidestepmaneuver,2)speed
andflightpathcontrolalongtheglideslope,and3)touchdownperformance.
II.B. HighAltitudeStallRecovery
Thetaskstartedduringcruiseat210kts(M = 0.75)atanaltitudeof41,000ft. Pilotswereinstructedtoinitiate
a self-inducedstall by setting the throttlesto idle, rolling20 degsleft and pitching approximately15 degsnose up,
deceleratingthroughthe stallwarninguntila negativesink rate was developed(asthe aircraftmodeldidnothavea
pronouncedpitchbreak). Torecoverfromthestall,pilotshadtofollowthecorrectrecoverysequenceofreducingthe
angle-of-attack(bypitchingtoapproximately15degnosedown),levelingthewings,andapplyingfullthrottleuntil
establishingasafepositiveclimbrate. Thetaskcalledforthepilotstopullthenoseupgentlyandsmoothlysoasnot
toactivatethestallwarningduringtherecovery.Moderateturbulencewaspresent.
2of20
AmericanInstituteofAeronauticsandAstronautics
Task:approachtoSFORWY28RwithsidesteptolandingonRWY28L Task:recoverfromahighaltitudestall
InitialCondition:1,250ftaltitudeatVref+5onGSandLOCfor28R InitialCondition:levelatFL410and210KIAS
Configuration:geardown,flaps30deg Configuration:clean
Ceiling/visibility:1,100ftceiling,10-milevisibility Ceiling/visibility:CAVU
Wind:230/15 Turbulence:moderate Gusts:none Wind:none Turbulence:moderate Gusts:none
Procedure: Procedure:
1. TracktheGSandLOCtoSFORWY28Rmaintaining141KIAS 1. Retardthrottletoidle
2. PerformsidesteptoRWY28LatATCcommand 2. Rolllefttoa20degbankangle
3. ContinuevisualtoRWY28LmaintainingGS 3. Pulluptodecelerateatapproximately4kt/s
4. Flareandtouchdown750–1,500ftfromthethreshold 4. Continuedecelerationthroughstickshakeruntilasinkratedevelops
5. Applynosedownpitch,rollasneeded,powerasneededtoreturn
Desiredperformance:
1 tosteady-stateflight
8
0
1 1. Deviationfrom141KIASwithin±5ktsuntil200ftaltitude
7- Desiredperformance:
01 2. Glideslopedeviationwithin±onedotuntil200ftaltitude
2
4/6. 3. Longitudinaltouchdown750–1,500ftfromthreshold 1. Maintainbankanglewithin±5degsabout15degsduringentry
251 4. Lateraltouchdown±14ftfromcentreline 2. Properstallrecoveryprocedure(push,roll,thrust,stabilizedflight)
OI: 10. 5. Sinkrateattouchdown≤6ft/s 43.. RReeccoovveerrswsimthoooutthelyxctoeesdpienegda>irp2l1a0neK’sIAlimSiatnatdiopnossitiverateofclimb
D
g | 5. Oscillatoryloadfactorpeaksbetween0.75and1.25g
or
a. 6. Duringrecovery,nomorethanoneadditionalstickshakeractivation
a
ai
c.
ar
p:// (a)Approachandlandingwithsidestep (b)Highaltitudestallrecovery
htt
7 |
1
0
1, 2 Task:recoverfromengineoutontakeoff
ary InitialCondition:attakeoffpositiononRWY28R
u
br Configuration:geardown,flaps10deg
e
F
n Ceiling/visibility:CAVU
o
R
E Wind:none Turbulence:none Gusts:none
T
N
E Procedure: Desiredperformance:
C
H
C 1. Advancethrottlestotakeoffthrust(90%N1) 1. Desiredheading±5degs
R
A 2. Maintaincentreline 2. Desiredairspeed±5kts
E
S
RE 3. RotateatVr=128kts,pitchto10degsandestablishspeedofV2+10 3. Bankapproximately5degstowardsoperatingengine
ES 4. Maintainheadingandspeedaftersingleenginefailure
M
A
A
S (c)Engineoutaftertakeoff
A
N Figure1. Experimentflightcards.
y
b
d
e
d
a
o
nl
w
Do 8R
2
desiredtouchdownpoint touchdownbox
750ft
500ft 250ft 750ft
8L
28ft 2
Figure2. Runwayconfigurationandtouchdownboxdefinition.
3of20
AmericanInstituteofAeronauticsandAstronautics
Thistaskevaluatedifchangesinmotioncuesaffecttherecoveryperformancebyhelpingapilotdamptheflight
pathresponse,aswellasstabilizetheprogressivelyless-stablerolldynamicsnearstall.
II.C. EngineOutafterTakeoff
Duringthetakeoffroll,thetaskrequiredpilotstorotateat128kts,establisha10degnoseuppitchattitude,and
maintain a steady climb speed of 145 kts. Either the left or right engine failed randomlyat a randomaltitude after
liftoffbutbelow100ft. Afteridentifyingthefailedengine,pilotsneededtoapplynearfullrudderpedaltowardsthe
goodengine,rollapproximately5degintothedirectionofthegoodenginetomaintainthedesiredtrack,andmodulate
theremainingthrusttomaintainspeed.
Thistaskevaluatedifchangesinmotioncuesaffectapilot’sabilitytodetectthefailedenginepromptlyandrecover
usingappropriatelateral-directionalcontrol.
II.D. AircraftModel
1
8
0 The experimentersmodified an existing mid-size twin-engine commercial transport aircraft model with a gross
1
17- weightof185,800lbsforthisstudy.Theenhancementsallowedforamorerepresentativeaircraftresponseinthestall
0
2
6. task.Mostsignificantly,modificationstotheliftcoefficientasafunctionofangleofattackallowedfortypicaltransport
4/
51 post-stall characteristics. Modifications to the rolling moment coefficient due to roll rate allowed for satisfactory
2
10. representation of reduced roll stability near stall. Finally, modifications to the rolling moment coefficient due to
OI: aileroninputsallowedforanadequaterepresentationofreducedrollcontrolauthoritynearthestall.
D
g | Thesimulatedaircrafthadsixdegreesoffreedomandatwo-crewcockpit. Theaircraftmodelincludedalanding
or
a. gearmodel,allowingittotaxi,takeoff,andland. Theaircraftcouldoperateinthetypicaltransportenvelopeuptoa
a
c.ai maximumcruisingaltitudeof42,000ft.
ar
p://
htt
7 | III. MotionConfigurations
1
0
2
y 1, Pilots performed each flight task with the same six motion configurations. Only the motion parameters of the
uar roll and heave degrees of freedom for the stall task were slightly different from the landing and takeoff tasks to
br
Fe accommodatethelargerollandverticalexcursionsduringthestall. TheexperimentusedthestandardVMSmotion
n
R o algorithmandhardwareforallmotionconfigurations. TheequivalenttimedelaysoftheVMSmotionsystemforthe
E
T pitch, roll, yaw, longitudinal,lateral, and verticalaxesare47, 68, 48, 50, 69, and67 ms, respectively. Moredetails
N
CE abouttheVMSmotionsystemareprovidedinRef. 18. Intheremainderofthispaper,thefourmotionconfigurations
H
C ofthepreviousstudy,referredtoasMCUE2014,arelabeledbyM1-M4.Thesixmotionconfigurationsofthecurrent
R
A study,referredtoasMCUE2015,arelabeledbyM5-M10(Table1).
E
S
E
R
S Table1. Motionconfigurations.
E
M
A A experiment label motion
S
A M1 largeVMSmotion(LMOT)
N
y MCUE2014 M2 low-gain/low-break-frequencyhexapodmotion(HEX-L)
b
ed (Ref.16) M3 medium-gain/medium-break-frequencyhexapodmotion(HEX-M)
d
a
nlo M4 high-gain/high-break-frequencyhexapodmotion(HEX-H)
w
Do M5 meanOMCT+σ(definedinRef.3)
M6 meanOMCT
M7 meanOMCT+1/3∆1
MCUE2015
M8 meanOMCT+2/3∆1
M9 lowerfidelityboundaryedge(definedinRef.16)
M10 lowerfidelityboundaryedge+1/4∆2
The six motion configurations of the current study were selected to encompass the lower edge of the objective
motioncueingcriteria fidelity boundariesdevelopedin the previousstudy16 and the meansof the Objective Motion
CueingTest (OMCT)responsesfroma statistical sampleof eightsimulators.3 Fig. 3 detailsthe selectionofthe six
motion configurations using the magnitude of the OMCT motion response for any degree of freedom. The mean
OMCTresponsesplusonestandarddeviationandthemeanOMCTresponseswerethefirsttwomotionconfigurations
(M5andM6,respectively).AsimulationmodeloftheVMSmotionlogicwasusedtocalculatethemotionparameters
4of20
AmericanInstituteofAeronauticsandAstronautics
ofM5andM6byfittingtheirsimulatedOMCTresponsestothemean-OMCTandmean-OMCT-plus-one-standard-
deviation responses. The lower edge of the initial objective motion cueing criteria fidelity boundaries determined
in Ref. 16 was used to determine a third motion configuration M9. The difference between the lower boundary
edgeandthemeanOMCT responses, ∆1, wasusedto determineM7andM8. Themotionparametersof thesetwo
configurationsandM6andM9wereequallyspaced 31∆1 fromeachother(Fig.3). Forthefinalmotionconfiguration
M10,thedifferencebetweenthelowerandupperboundaryedgesoftheinitialobjectivemotioncueingcriteriafidelity
boundaries,∆2,wasused.ThemotionparametersofM10weredefinedbythelowerboundaryplus 41∆2.
Fig. 3 providesa schematic overviewof the methodused
todefinethemotionconfigurations,andonlyshowsthevaria-
tioninmotiongain.Inreality,themethodalsoextendedtothe
∆2
othermotionparameters, such as the washoutbreakfrequen- M10
cies and damping ratios. In addition, the uncertainty bound- 14∆2 M9
ariesoftheinitialobjectivemotioncueingcriteriaandthearea 31∆1 M8
7-1081 dolaeftfiethdneeOdOMbMyCCTthTerermespsepoaonnnssesespslfuoosrvaetnhrldeaprmeodilnl.udFseigogrn.eee4sodtafenpfdriceatersddothdmeevcoiaafltcitohune- Hjj ∆1 1133∆∆11 MMM756
1
20 motionconfigurationsforthesidesteptask.Themotiontuning
6.
4/ approachfollowedisespeciallyclearathigherfrequenciesin
1
5
0.2 themagnitudeplotandinthephaseplot.Fig.4showsthatthe MCUE2014fidelityboundary
OI: 1 sixmotionconfigurationsofthecurrentstudyspantheareabe- meanOMCT±σ
org | D ptwlueseonntehestlaonwdaerrdcdrietveriaiatiounncoefrttahienOtyMboCuTnrdeasrpieosnasen;dththaetims,ethane !,rads−1
aiaa. areaoftheOMCTfidelityregionassociatedwithlowerfidelity Figure3. Motionconfigurationdefinition.
arc. motion.Thisareawasnotfullycoveredinthepreviousexperiment.16 NotethattheOMCTresponsesinFig.4arenot
p:// fromactualmeasurementsandmotionsystemdynamicsarenotincluded.
htt
7 | Inthepreviousexperiment,threeofthefourmotionconfigurationsweretunedtofitonahexapodmotionsystem
1
20 with 60-inchlegs(M2-M4). To that extent, a hexapodalgorithmwas implementedto runin parallelwith the VMS
y 1, motionlogicformotiontuningandmonitoringpurposes.16 Inthecurrentexperiment,noemphasiswasplacedonde-
ar
bru velopingspecifichexapodmotionconfigurations.However,duetothenatureoftheirdefinition,motionconfigurations
e
F M5toM9mostlyremainedwithinthehexapodmotionenvelopeforallthreetasks.
n
o
R
E
T
N
E
C
H 101 270
C
AR meanOMCT
E
S M5
E
R
ES 100 180 M6
M M7
A
A M8
S
NA eg M9
ed by |H|p 10-1 ,dHp 90 M10
d
a
o 6
nl
w
o
D
10-2 0
OMCTfidelityregion3
boundaryuncertainty16
meanOMCT±σ
10-3 -90
10-1 100 101 10-1 100 101
ω,rads−1 ω,rads−1
(a)Rollmagnitude. (b)Rollphase.
Figure4. CalculatedrollOMCTresponsesofthesidesteptaskmotionconfigurations.
5of20
AmericanInstituteofAeronauticsandAstronautics
Figure5. VerticalMotionSimulator. Figure6. Cockpitsetup. Figure7. Primaryflightdisplay.
1 IV. Experiment Setup
8
0
1
7-
1
20 IV.A. IndependentVariable
6.
4/
51 Motion configurationwas the only independentvariable, with six levels (M5-M10). Every pilot flew each task
2
10. withallsixmotionconfigurations(Table1).
OI:
D
g | IV.B. Apparatus
or
a.
a
ai The experiment used the VMS with the transport cab (T-CAB) (Fig. 5).18 Pilots flew from the left seat; the
c.
p://ar instructoroccupiedtherightseat. Aprimaryflightdisplay(PFD)waspositionedinfrontofeachpilot(Fig.6). The
htt navigationdisplayswerepositionednexttothePFDstowardsthecenterofthecab.Anadditionaldisplayinthecenter
7 | ofthecabshowedtheengineparameters.Thisdisplaychangedtoshowtaskperformanceaftereachrun.
1
0
1, 2 A column and wheel controlled aircraft pitch and roll, respectively. A thumb switch on the wheel controlled
ary elevatortrim. Conventionalrudderpedalscontrolledthe rudderdeflectionin the air andnose wheelsteering on the
u
br ground. Two throttle leverscontrolledthe power of the two engines. The instructorpilot configuredflaps and gear
e
F
n withrepresentativecontrolsbeforeeachtask.
o
ER ThePFDsymbologywassimilartothatonaBoeing777(Fig.7). Speedandheadingbugsindicatedthedesired
T
N speedandheadingforeachtask. Inaddition,typicalsymbologyonthespeedtapeindicatedtheminimumandmax-
E
C
H imumspeeds,andV-speeds. ThePFDalsodepictedconventionallocalizerandglideslopeerrorindicators. Agreen
C
R speed trend vectororiginatingfromthe indicatedairspeed showedwhat the airspeed would be in 10 s. The control
A
E columnsinthecockpithadstickshakerstowarnpilotsofanimpendingstall. Theactivationoftheshakersoccurred
S
E
R simultaneouslywhentheminimumspeedtape,alsoknownasthe“barberpole”,coincidedwiththeindicatedairspeed.
S
ME Thecollimatedout-the-windowdisplayofT-CABconsistedofaprojectionsystemprojectingahigh-qualityimage
A
A onsixsphericalmirrors. Themirrorsformedadome-likesectionprovidingacontinuousfield-of-viewimagetoboth
AS pilots. Theout-the-windowvisualhada220◦horizontalfieldofviewanda28◦verticalfieldofview(10◦upand18◦
N
y down).ARockwell-CollinsEPX5000computerimagegeneratorcreatedtheout-the-windowvisualscene. Thevisual
b
ed system equivalent time delay was 62 ms.18 This was in line with the equivalent time delays of the motion system
d
a
nlo (SectionIII).
ow AMicrosoft(cid:13)R SurfaceTM tabletwasusedbypilotstoprovidemotionratings.
D
IV.C. Procedures
Thepilotpre-briefingexplainedthepurposeoftheexperiment,theprocedures,conditions,andperformancecriteria
foreachflighttask. Pilotswereinformedtheywouldperformeachtaskwithsixdifferentmotionconfigurationsand
that the configurationswould be presented randomly. However, no specifics about the motion configurations were
given.
Pilots performed all three tasks, each with the six different motion configurations. Each motion configuration
was repeatedsix times fora total of36 runspertask. The firstsix runswereused as trainingrunsin whichthe six
motion conditions were presented once each. The remaining 30 runs were used for data analysis. The tasks and
motion configurationswere presented randomly. A randomized Latin square determined the order of the tasks and
6of20
AmericanInstituteofAeronauticsandAstronautics
motion configurations. All runs for a particular task were performed in a single session. Each task session lasted
one-and-a-halftotwohours,andbreaksweretakeninbetweensessions.
Before each task, the instructor pilot reviewed the procedures, performance criteria, the relevant controls, and
displays. Theinstructorevaluatedapilot’sperformanceaftereachrunusingtaskperformanceinformationdisplayed
inthecab.Anexperimentobserverinthecontrolroomverifiedtheevaluation.Aftercompletingeachrun,participant
pilotsratedthemotionoftwospecificpartsofthetaskwithtwodifferentratingscalesonatabletPC(SectionIV.E).
IV.D. Participants
Fifteenexperiencedairlinetransportpilotsparticipated.EachpilotexceptonehadaB757/B767typerating,asthe
aircraftmodelusedinthesimulationwasofanaircraftsimilartoaB757intermsofconfiguration,size,andweight.
Allpilotshadexperienceonmanyotheraircrafttypes.TheaveragenumberofflyinghourspilotshadonaB757/B767
was4,658withastandarddeviationof±4,259.Theaveragenumberofflyinghoursonotheraircrafttypeswas7,969
withastandarddeviationof±5,064. Allpilotsweremaleandelevenhadexperienceasacaptain. Tenoutofthe12
1 pilotswhoparticipatedinthepreviousexperiment,discussedinRef. 16,participatedinthecurrentexperiment.
8
0
1
7-
1
20 IV.E. DependentMeasures
6.
4/
51 Sixsubjectivedependentmeasuresand11objectivedependentmeasureswererecordedandanalyzed.Pilotsrated
2
10. thesimulatormotionoftwospecificpartsofeachtaskwithtwodifferentratingsineachrun. Foreachrating,pilots
OI: answeredaquestionbymovingadigitalslideronananaloguefidelityscale(AFS).Theanaloguescalerangedfrom
D
g | 0%(lowfidelity)to100%(highfidelity).Thefollowingquestionswereaskedforthesidesteptask:
or
a.
a
c.ai 1. Howwouldyouratemotionfidelityinthesidestepturnswithrespecttowhatyouwouldexpectfromrealflight?
ar
http:// 2. Howwouldyouratemotionfidelityinthelandingflarewithrespecttowhatyouwouldexpectfromrealflight?
7 |
1
0 thestalltask:
2
1,
y
uar 1. Howwouldyouratemotionfidelityintheapproachtothestallwithwhatyouwouldexpectfromrealflight?
br
e
F
n 2. Howwouldyouratemotionfidelityinthestallrecoverywithwhatyouwouldexpectfromrealflight?
o
R
E
T
N andthetakeofftask:
E
C
H
C 1. Howwouldyouratemotionfidelityintheinitialtakeoffrollwithrespecttowhatyouwouldexpectfromreal
R
A
E flight?
S
E
R
S 2. Howwouldyouratemotionfidelityrightaftertheenginefailurewithrespecttowhatyouwouldexpectfrom
E
M realflight?
A
A
S
NA Severalobjectivemeasuresdeterminedtheeffectofmotionontaskperformance. Manymeasuresrelateddirectly
d by totheperformancecriteria(Fig.1). Fortheapproachandlandingwithsidestep,theRMSoftheglideslope,RMSgs,
de and speed deviationduringthe approach,RMS , were calculated. Calculationsfor these variablesused data from
a V
o
nl the last 60s beforereachingthe decisionaltitude of 200ft. When the main geartouchedthe runway, datacaptures
w
Do occurredforthesinkrate,h˙td,andthelongitudinalandlateraldeviations,∆xtdand∆ytd,fromthedesiredtouchdown
point.
Forthe stall recovery,the RMS rollerror,RMS , appliedto the 30 s beforethe start of the stallrecovery. The
φ
maximum pitch rate deviation, q , and the number of stick shakers, N , applied to the stall recovery segment.
max s
Pitchratewassubstitutedasapartialsurrogatetoanalyzeloadfactoroscillationsinthestallrecovery,asitwasmore
suitable for analyzingoscillatory behavior. Finally, for the engine outon takeoff task, the RMS of the headingand
speeddeviationsaftertheenginefailure,RMS andRMS ,useddatafromthelast15saftertheenginefailure.The
ψ V
reactiontimeoftheinitialpedalinputaftertheenginefailure,t ,wasfromthetimeoftheenginefailuretothetime
p
whenthepedalinputwas10%ofthemaximuminput.
7of20
AmericanInstituteofAeronauticsandAstronautics
V. Results
This section presents the mean results of the 15 pilots for the approachand landingwith sidestep, high-altitude
stallrecovery,andengineoutaftertakeofftasks. Foreverypilot,datafromthelastfiverunsforeachtaskandmotion
configurationwereaveraged.Error-barplotspresentthecontinuous-intervaldependentmeasures,withmeansand95%
confidenceintervalsforeachmotioncondition.Barplotspresenttheordinaldependentmeasures,withthenumberof
occurrencesforeachdependentmeasurelevelandthemedianforeachmotioncondition.Whereverappropriate,grey
dashedlinesdepictthetaskperformancecriteria.Notethatthissectiondiscussestheresultsofthecurrentexperiment
(MCUE2015)only. Theresultsofthepreviousexperiment(MCUE2014)arediscussedinRef. 16andaregivenhere
forreferenceonly.
A repeated-measures analysis of variance (ANOVA) de- Table2. Summaryofstatisticaltestresults.
tected possible statistically significant differencesin the con- Measure df F/χ2 p η2 Sig.
tinuous interval dependentmeasures.19 A Friedman test was
SidestepTask
used for the ordinal dependent measures. For the ANOVA
1 toproduceaccurateresults,thedatamustmeetthreeassump- AFS1 5.0,70.0 0.285 0.920 0.020 −
108 tions: 1)thereshouldbenosignificantoutliers,2)datashould AFS2 5.0,70.0 0.515 0.764 0.036 −
017- be approximately normally distributed for each level of the RMSgs 5.0,70.0 0.304 0.909 0.021 −
2
2514/6. tiwndeeepnenaldlecnotmvabriinaabtlieo,nasnodf3le)vvealrsiaonfctehseoifndtheepednifdfeenretnvcaersiabbele- hR˙tMd SV 55..00,,7700..00 10..044380 00..389266 00..007300 −−
OI: 10. mustbeequal(i.e.,assumptionofsphericity). ∆∆yxttdd 55..00,,7700..00 11..845694 00..121133 00..101975 −−
D Boxplotsidentifiedoutliers,normalitywascheckedusing
org | theShapiro-Wilktest,andMauchly’stestcheckedtheassump- StallTask
aa. tion of sphericity. Few outliers were detected, so they were AFS1 1.5,21.6gg 1.545 0.235 0.099 −
arc.ai kept in the data analysis. Data were generally normally dis- AFS2 2.6,40.0gg 1.095 0.357 0.073 −
p:// tributed. In the few cases they were not, we did not correct RMSφ 3.1,43.4gg 4.948 0.004 0.261 ∗∗
7 | htt for it, as an ANOVA is fairly robust to deviations from nor- qmax 2.3,31.7gg 3.519 0.037 0.201 ∗∗
01 mality. When the assumption of sphericity was violated, the Ns 5.0 5.555 0.352 – −
2
y 1, degrees of freedom of the ANOVA were corrected using the TakeoffTask
uar Greenhouse-Geisseradjustment. AFS1 1.4,19.5gg 1.886 0.185 0.119 −
br
Fe Post-hoctestswithBonferroniadjustmentwereperformed AFS2 5.0,70.0 1.647 0.194 0.105 −
n
R o for pairwise comparisons of motion conditions when the RMSψ 5.0,70.0 7.305 0.000 0.343 ∗∗
TE ANOVA indicated an overall significant difference. All sta- RMSV 5.0,70.0 0.599 0.701 0.041 −
N
CE tistical tests had a significance level of 0.05. Table 2 gives a tp 5.0,70.0 5.955 0.000 0.298 ∗∗
H
C summaryofthestatisticaltestresultsforalltherepeatedmea-
AR sures(SectionIV.E). Inthistable, df arethedegreesoffree- gg = Greenhouse-Geissercorrection
ESE dom,F orχ2 istheteststatisticfortheANOVAorFriedman ∗∗ = significant(p<0.05)
S R test, respectively, p is the probability of observing an effect, ∗ = marginallysignificant(0.05≤p<0.1)
AME andη2isthepartialeta-squared,indicatingsampleeffectsize. − = notsignificant(p≥0.1)
A
S Next,motion-fidelity-ratingresultsarepresented,followed
A
N by the task-performance results, and an analysis of the magnitude of false motion cues. Finally, objective motion
y
d b cueingcriteriaresultingfromthetask-performanceandfalse-motion-cueresultsarepresented.
e
d
a
o
nl
w V.A. MotionFidelityRatings
o
D
Pilotsratedthemotionfidelityoftwospecificpartsofeachtaskbymovingaslideronananaloguefidelityscale
between 0% and 100% (Section IV.E). This resulted in ratings AFS1 and AFS2 providedin Figures8, 9, and 10
forthesidestep,stall,andtakeofftasks,respectively. TheANOVAdidnotrevealanysignificantdifferencesbetween
motionconditionsforanyoftheAFSratings(Table2).Forthesidesteptask,pilotsratedthemotionfidelitycompared
to real flight in the sidestep turns around 60% in each condition (Fig. 8a), and motion fidelity in the landing flare
between 50 and 60% (Fig. 8b). For the stall task, motion in the approachto the stall and in the stall recoverywas
ratedaround70%ineachcondition(Figures9aand9b,respectively). Finally,forthetakeofftask,motionduringthe
initialtakeoffrollandaftertheenginefailurewasratedbetween60and70%ineachcondition(Figures10aand10b,
respectively).
8of20
AmericanInstituteofAeronauticsandAstronautics
100 100
90 90
80 80
70 70
% 60 % 60
1,S 50 2,S 50
AF 40 AF 40
30 30
20 20
10 10
0 0
M5 M6 M7 M8 M9 M10 M5 M6 M7 M8 M9 M10
(a)Rating1 (b)Rating2
Figure8. Motionfidelityratingsforthesidesteptask.
1
8
0
1
7-
1
20 100 100
6.
4/ 90 90
1
5
0.2 80 80
1
OI: 70 70
D % 60 % 60
org | 1,S 50 2,S 50
aiaa. AF 40 AF 40
arc. 30 30
p:// 20 20
7 | htt 10 10
01 0 0
2
1, M5 M6 M7 M8 M9 M10 M5 M6 M7 M8 M9 M10
y
ar (a)Rating1 (b)Rating2
u
ebr Figure9. Motionfidelityratingsforthestalltask.
F
n
o
R
E
T
N 100 100
E
C
H 90 90
C
R 80 80
A
E 70 70
S
E
R % 60 % 60
MES 1,S 50 2,S 50
A A AF 40 AF 40
AS 30 30
N
y 20 20
b
ed 10 10
d
oa 0 0
nl
w M5 M6 M7 M8 M9 M10 M5 M6 M7 M8 M9 M10
o
D (a)Rating1 (b)Rating2
Figure10. Motionfidelityratingsforthetakeofftask.
V.B. TaskPerformance
V.B.1. ApproachandLandingwithSidestepTask
Fig. 11 providesthe task performanceresults for the approachand landing with sidestep task. The RMS of the
glideslopeandspeeddeviationintheapproacharegiveninFigures11aand11b,respectively. Nosignificantdiffer-
enceswerefoundbetweenconditionsforbothvariables(Table2). Notethatpilotswereabletomeettheglideslope-
deviationperformancerequirementeasilywithanaverageglideslopedeviationofaround0.4dots. Resultswerevery
similartothepreviousexperiment. Pilotshaddifficultiesmeetingthespeed-deviationperformancerequirementwith
9of20
AmericanInstituteofAeronauticsandAstronautics
1.2 8
7
1.0
6
dot 0.8 kts 5
,Sgs 0.6 ,SV 4
M M
3
R 0.4 R
2
0.2 MCUE2014 MCUE2015 1 MCUE2014 MCUE2015
0.0 0
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
(a)Glideslopedeviationonapproach (b)Speeddeviationonapproach
1
8 2500 16
0
1
017- MCUE2014 MCUE2015 14
2
4/6. 2000 12
1
5
2 10
g | DOI: 10. ∆,ftxtd 1500 ∆,ftytd 68
or
a. 1000 4
a
ai
arc. 2 MCUE2014 MCUE2015
http:// 500 0
7 | M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
1
20 (c)Longitudinaldeviationfromtouchdownpoint (d)Lateraldeviationfromtouchdownpoint
1,
y
ar 8
u
br
Fe 7
n
o
R 6
E
T
N 5
H CE ft/s 4
C ,d
AR ˙ht 3
E
S
RE 2
S
ME 1 MCUE2014 MCUE2015
A
A 0
S
A M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
N
y (e)Verticalspeedattouchdown
b
ed Figure11. Performancedataoftheapproachandlandingwithsidesteptask.
d
a
o
nl
w
o
D
anaverageairspeeddeviationbetween5and6kts. Pilotswereslightlyclosertomeetingthespeed-deviationrequire-
mentcomparedtothepreviousexperiment.
Thelongitudinalandlateraldeviationsfromthedesiredtouchdownpointwerenotsignificantlydifferentbetween
motionconfigurations(Figures11cand11d,respectively).Pilotsgenerallytoucheddownaroundthemaximumallow-
able1,500ftfromtherunwaythresholdinthepreviousexperiment;however,toucheddownwellbeforethelimitin
thecurrentexperiment,around1,250ft. Pilotsdeviatedmuchmorelaterallyfromthedesiredtouchdownpointinthe
currentexperimentcomparedtothepreviousexperiment. Thesinkrateattouchdown,depictedinFig.11e,wasnot
statisticallysignificantlydifferentbetweenmotionconfigurations. Thesinkratewasaroundthemaximumallowable
valueof6ft/sineverymotionconditionandverysimilartotheaveragesinkrateinthehexapodmotionconfigurations
ofthepreviousexperiment(M2-M4).
10of20
AmericanInstituteofAeronauticsandAstronautics