Table Of ContentUS008789454B1
(12) United States Patent (10) Patent N0.: US 8,789,454 B1
Roland et a]. (45) Date of Patent: Jul. 29, 2014
(54) MULTI-PLY HETEROGENEOUS ARMOR (56) References Cited
WITH VISCOELASTIC LAYERS AND
U.S. PATENT DOCUMENTS
CYLINDRICAL ARMOR ELEMENTS
3,431,818 A * 3/1969 King .......................... .. 89/3602
(71) Applicants:Charles M. Roland, Waldorf, MD (US); 4,404,889 A 9/1983 Miguel
Daniel M. Fragiadakis, Alexandria, VA H001061 H 6/1992 Rozner et 31.
(US); Raymond M. Gamache, Indian 5,190,802 A 3/1993 Pilato
5,349,893 A 9/1994 Dunn
Head, MD (US)
5,361,678 A * 11/1994 Roopchand et a1. ....... .. 89/3602
6,679,157 B2 1/2004 Chu et a1.
(72) Inventors: Charles M. Roland, Waldorf, MD (US); 6,895,851 B1 5/2005 Adams et a1.
Daniel M. Fragiadakis, Alexandria, VA 7,300,893 B2 * 11/2007 Barsoum et al. ............ .. 442/134
(US); Raymond M. Gamache, Indian 7,938,053 B1 5/2011 Dudt et a1.
8,087,143 B2 1/2012 DiPietro
Head, MD (US) 8,215,223 B2 7/2012 Lucuta et a1.
8,220,378 B2 7/2012 Gamache et a1.
(73) Assignee: The United States of America, as (Continued)
represented by the Secretary of the
Navy, Washington, DC (US) OTHER PUBLICATIONS
Backman M.E ., and Goldsmith W., “The mechanics of penetration of
Notice: Subject to any disclaimer, the term of this
projectiles into targets”, Int J Eng Sci 16 (1978), pp. 1-99.
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. (Continued)
(21) Appl. N0.: 13/944,073 Primary Examiner * Bret Hayes
Assistant Examiner * Joshua Freeman
(22) Filed: Jul. 17, 2013 (74) Attorney, Agent, or Firm * US Naval Research
Laboratory; Sally A. Ferrett
Related U.S. Application Data (57) ABSTRACT
(62) Division of application No. 13/829,977, ?led on Mar. An armor system with a composite laminate having at least
four alternating layers (two bi-layers) of a ?rst material and a
14, 2013, now Pat. No. 8,746,122, which is a division
second material, the ?rst material having a lower acoustic
of application No. 13/085,130, ?led on Apr. 12, 2011.
impedance than the second material. The ?rst material is a
(60) Provisional application No. 61/322,963, ?led on Apr. viscoelastic polymer with a glass transition temperature less
12, 2010. than the expected operational temperature range, and the
second material can be a hard material such as steel, alumi
(51) Int. Cl.
num, or ceramic. The laminate can include many alternating
F41H 5/04 (2006.01)
layers of elastomer and hard material, and can be adhered or
(52) U.S. Cl. ai?xed to a thicker armor substrate. Additional protective
CPC .......... .. F41H 5/0421 (2013.01); F41H 5/0428 elements such as corrugated metal-ceramic panels and
(2013.01) armored glass cylinders can be added to improve resistance to
USPC .......................................... .. 89/36.02; 89/903 armor piercing rounds, explosively formed penetrators, or
(58) Field of Classi?cation Search other threats.
USPC ............ .. 89/36.02*36.09, 9034917; 109/495
See application ?le for complete search history. 10 Claims, 9 Drawing Sheets
US 8,789,454 B1
Page 2
(56) References Cited Liang C.C., Yang M.F., Wu P.W. and Teng T.L., “Resistant perfor
mance of perforation of multi-layered targets using an estimation
U.S. PATENT DOCUMENTS
procedure with marine application”, Ocean Eng., vol. 32 pp. 441
468, (2005), Available online Nov. 26, 2004.
2002/0088340 A1 7/2002 Chu et al.
2006/0027089 A1 2/2006 Cordova et al. Malvar, L.J., Crawford, J .E., and Morrill, K.B. “Use of composites to
2007/0017359 A1 1/2007 Gamache et al. resist blast”, Journal of Composites for Construction, vol. 11, No. 6,
2007/0089596 A1 4/2007 Huber et al. pp. 601-610, (Nov/Dec. 2007).
2009/0031889 A1 2/2009 Saul et al.
Matthews, W., “Polymer protection”, Defense News, (Apr. 26, 2004),
2009/0293709 A1 12/2009 Joynt et al.
2009/0308239 A1 12/2009 Jones et al. p. 32.
2010/0055491 A1 3/2010 Vecchio et al. Pathak J.A., Twigg J.N., Nugent K.E., Ho D.L., Lin E.K. and Mott
2010/0294123 A1* 11/2010 Joynt et al. ................. .. 89/36.02 P.H. et al., “Structure evolution in a polyurea segmented block
2011/0203452 A1 8/2011 Kucherov et al. copolyrner due to mechanical deformation”, Macromolecules, vol.
2011/0214561 A1* 9/2011 Simovich ................... .. 89/36.02 41, p. 7543, (2008).
2012/0017754 A1 1/ 20 12 J oynt
2012/0085224 A1 4/2012 Jongedijk et al. Persson, B.N.J., Tartaglino U., Albohr O. and Tosatti E., “Rubber
2012/0174749 A1 7/2012 Stumpf et al. friction on wet and dryroad surfaces: the sealing effect”, Phys Rev B,
2012/0174750 A1* 7/2012 Oboodi et a1. ............. .. 89/3602 vol. 71, p. 035428, (2005).
2012/0174757 A1 7/2012 Grace Plazek D.J., Chay I.C., Ngai K.L., and Roland C.M.,
2012/0186424 A1 7/2012 Tunis et al. “Thermorheological complexity of the softening dispersion in
2012/0207966 A1 8/2012 Dickson
polyisobutylene”, Macromolecules, vol. 28, p. 6432, (1995).
2012/0312150 A1 12/2012 Gamache et al.
Porter, J.R., Dinan, R.J., Hammons, M.I. , and Knox, K.J., “Polymer
OTHER PUBLICATIONS coatings increase blast resistance of existing and temporary struc
Ben-Dor G., Dubinsky A. and Elperin T.,“Improved Florence model tures”, AMPTI AC Quarterly, vol. 6, No. 4, pp. 47-52, (2002).
and optimization of two-component armor against single impact or Roland C.M., “The Viscoelastic Behavior of Rubber”, in Mark, J .E.,
two impacts”, Compos Struct., vol. 88 , pp. 158-165, (2009), avail Erman, B., and Eirich F.R., eds., Technology of Rubber, Elsevier, 3rd
able online Feb. 20, 2008. ed., pp. 183-236, (2005).
Bogoslovov, R.B., Roland, C.M., and Gamache, R.M., “Impact-in
Roland C.M., “Structure Characterization in the Science and Tech
duced glass transition in elastomeric coatings”, Applied Physics Let
nology of Elastomers”, in Mark, J.E., Erman, B., and Eirich F.R.,
ters, vol. 90, pp. 221910-1-221910-3, (2007). eds., Technology of Rubber, Elsevier, 3rd ed., pp. 105-155, (2005).
Buchan PA. and Chen, J.F., “Blast resistance ofFRP composites and
Roland C.M., Twigg, J.N., Vu, Y., and Mott, P.H., “High strain rate
polymer strengthened concrete and masonry structuresia state of
mechanical behavior of polyurea”, Polymer, vol. 48, pp. 574-578,
the art review”, Composites: Part B, vol. 38, pp. 509-522, (2007).
(2007). Available online Dec. 18, 2006.
Available online Feb. 1, 2007.
Roland C.M., Fragiadakis, D., and Gamache, R.M., “Elastomer-steel
Capps R.N., “Elastomeric materials for acoustical applications”,
laminate armor”, Composite Structures, vol. 92, pp. 1059-1064,
Naval Research Laboratory Memorandum Report No. 431 1, p. 332.,
available online Oct. 4, 2009.
(1989).
Roland C.M., “Mechanical behavior of rubber at high rates”, Rubber
Capps, R.N., “Dynamic Young’ s moduli of some commercially avail
Chem Technol, vol. 79, pp. 429-459, (2006).
able polyurethanes”, J. Acoustic Society ofAmerica, V. 73, No. 6, pp.
2000-2005, (Jun. 1983). Santangelo PG. and Roland C.M., “Chain ends and the Mullins effect
Casalini R. and Roland C.M., “Aging of the secondary relaxation to in rubber”, Rubber Chem Technol, vol. 65, pp. 965-972, (1992).
probe structural relaxation in the glassy state”, Phys Rev Lett, vol. Santangelo PG. and Roland C.M., “Temperature dependence of
102, p. 035701-1-035701-4, (Jan. 2009). mechanical and dielectric relaxation in cis-1,4-polyisoprene”, Mac
Colakoglu, M. “Effect of temperature on frequency and damping romolecules, vol. 31, p. 3715, (1998).
properties of polymer matrix composites”, Adv Composite Materi Sarva S.S., Deschanel S., Boyce MC. and Chen W., “Stress-strain
als, vol. 17, pp. 111-124, (2008). behavior of a polyurea and a polyurethane from low to high strain
Corbett, G.G., Reid SR. and Johnson W., “Impact loading of plates
rates”, Polymer, vol. 48, pp. 2208-2213,(2007).
and shells by free-?ying projectiles: a review”, Int J. Impact Eng., vol.
Sodha MS. and Jain V.K., “On physics ofarmor penetration”, J Appl
18, pp. 141-230, (1996).
Phys, vol. 29, pp. 1769-1770, (1958).
Corsaro RD. and Sperling L.H., Editors, Sound and vibration damp
ing with polymers, ACS symposium series vol. 424, American Song H.H. and Roe R.J., “Structural change accompanying volume
Chemical Society, Washington (DC) (1990). change in amorphous polystyrene as studied by small and interme
Dey S., Borvik T., Teng X., Wierzbicki T. and Hopperstad O.S., “On diate angle X-ray scattering”, Macromolecules, vol. 20, pp. 2723
the ballistic resistance of double-layered steel plates: an experimental 2732, (1987).
and numerical investigation”, Int J Solids Struct., vol. 44,pp. 6701 Tasdemirci A. and Hall I.W., “Development of novel multilayer mate
6723, (2007) , Available online Apr. 2007. rials for impact applications: a combined numerical and experimental
El Sayed, T., Mock W., Jr., Mota, A., Fraternali, F., and Ortiz, M.,
approach”, Mater Des., vol. 30, pp. 1533-1541, (2009), Available
“Computational assessment of balllistic impact on a high strength
online Aug. 14, 2008.
structural steel/polyurea composite plate”, Comput Mech, vol. 43,
pp. 525-534, published online Aug. 27, 2008. Tasdemirci A., Hall I.W., Gama BA. and Guiden M.,“Stress wave
Espinosa H.D., Brar N.S., Yuan G., XuY. and Arrieta V., “Enhanced propagation effects in two- and three-layered composite material”,
ballistic performance of con?ned multi-layered ceramic targets Journal of Composite Materials, vol. 38, pp. 995-1009, (2004).
against long rod penetrators through interface defeat”, Int J Solids Tekalur, S.A, Shukla, A., and Shivakumar, K., “Blast resistance of
Struct, vol. 37, pp. 4893-4913, (2000). polyurea based layered composite materials”, Composite Structures,
Gama B.A., Bogetti T.A., Fink B.K., Yu C.J., Claar TD. and Eifert vol. 84, No. 3, pp. 271-281, (2008).
H.H. et al., “Aluminum foam integral armor: a new dimension in Reyes-Villanueva, G., and W.J. Cantwell, “The high velocity impact
armor design”, Compos Struct., vol. 52, pp. 381-395, (2001).
response of composite and FML-reinforced sandwich structures”,
Jones, D.I.G., Handbook of Viscoelastic Vibration Damping, Wiley,
Composites Science and Technology, vol. 64, pp. 35-54, (2004).
pp. 39-74, (2001).
Kluppel M. and Heinrich G., “Wet skid properties of ?lled rubbers Teng X.; Wierzbicki T.; Huang M.; “Ballistic resistance of double
and the rubber-glass transition”, Rubber Chem Technol, vol. 73, p. layered armor plates”, Int J Impact Eng, vol. 35, pp. 870-884, (2008).
53, (2000). Available online Feb. 12, 2008.
US 8,789,454 B1
Page 3
(56) References Cited and Structures, vol. 45, No. 3, pp. 3769-3778, (2008).Available
online Oct. 22, 2007.
OTHER PUBLICATIONS Zavattieri P.D., Espinosa H.D., “Ballistic penetration of multi-lay
ered ceramic/steel target”, In: Furnish M.D., Chhabildas L.C.,
Xue, Z.; Hutchinson, J .W.; “Neck retardation and enhanced energy
Hixson R.S., editors, Shock compression of condensed matteri
absorption in metal-elastomer bilayers”, Mechanics of Materials,
vol. 39, pp. 473-487, (2007). 1999, AIP conference proceedings, vol. 505, pp. 1117-1120, (2000).
Xue, Z.; Hutchinson, J .W.; “Neck development in metal/elastomer
bilayers under dynamic stretchings”, International Journal of Solids * cited by examiner
US. Patent
Jul. 29, 2014 Sheet 1 0f9 US 8,789,454 B1
12\_
10\_
| ' | | ' ' '
24 I
PIB
I PU-Z
51
22 I _
PU-I
PV[EENLETO%RCAITITO]YN
NBR
028 25 I
NR
PI
PB
0 26 270 _
I I I l I I I l I I I |
-80 -60 -40 -20
GLASS TRANSITION TEMPERATURE [°C]
FIG. 2
US. Patent
Jul. 29, 2014 Sheet 2 0f9 US 8,789,454 B1
0.18
I l l I l l I l l I l l I
- . 00% _
_ PI (-60 C) g) <3) _
0.12
LTAONGSENST
_ (Q \Q _
_ 8 Oo _
0.06
.— 9 *2, i
_ ‘2) _
0.00 | | | | | | | | | | | | |
10-9 10-6 10-3 100 103
aT X (n (rad s4)
FIG. 3A
_ | | | | | | | I l | ' ' | _
_ PIB (-52" o) op __
0.12 —
o
LTAONGSENST
_ 323/0 -
0.6
i at
0.0 — | | | | | M | | | | | | —
10-9 10-6 10-3 100 103
aT X 0) (rad 5'1)
FIG. 3B
0.15
0.10
LTAONGSENST
0.05
0.00 |
10-3
aT X (n (rad s4)
FIG. 3C
US. Patent Jul. 29, 2014 Sheet 3 0f9 US 8,789,454 B1
S[TMREPSaS ]
US. Patent Jul. 29, 2014 Sheet 4 0f9 US 8,789,454 B1
l I l I | I l |
_ 50 ____ -42!" _
000- "A: . , ’ ' ' . _ _ _ _ _ _ _ __O__
_ “U ¢ ’ ' ? ? ? -‘O _____ " _
@ ' U _--0 """ '7 '
a _ 50 _
a
g 000— _
“>J - _
Z
2 _ BUTYLRUBBERCOATING _
E
E - UGACMHHSSUBSTRATE -
55 700- OGZCMHHSSUBSTRATE _
_ l3/54 BARE SUBSTRATE _
000 - 52 BARE SUBSTRATE _
9/ | | | | | | |
0.0 0.5 1.0 1.5 2.0
COATINGTHICKNESS(CM)
FIG. 5
US. Patent Jul. 29, 2014 Sheet 5 0f9 US 8,789,454 B1
62/
63
60/\
FIG. 6A
67/ 68
65/\
66/, 69
64/<\
FIG. 6B
70
71
72
73
FIG. 6C
}ISTBILAYERPAIR
}NTH BILAYER PAIR
FIG. 6D
US. Patent Jul. 29, 2014 Sheet 6 0f9 US 8,789,454 B1
}NTH BILAYER PAIR
}1ST BILAYER PAIR
80 HHS SUBSTRATE
FIG. 6E
US. Patent Jul. 29, 2014 Sheet 7 099 US 8,789,454 B1
EFFECTOF FRONT-SURFACE ELASTONIERLAYERSON 91919119 999109 STEELPLATES
CONSTRUCTION 91EE9111E991NN1 E1191ONE9919E991NN) 19E119EN911N1NO1N12) 99919119)
SINGLE LAYER ONE12.19 NONE 99 1991919
91N99E911ER ONE12.1b NONE 99 119199
Bl-LAYER ONE12.1b ONE12.1 119 119991
FOUR LAYERS 1999.19 9909.1 119 191992
EIGHTLAYERS 999119.29 90999.2 119 191991
9 RONEONONOOENE09911RNOR
9 111911 11199 91EEE
EFFECTOF ELASTOMER 919E999 ON 91199119 NNNN REDUCED LAMINATE WEIGHT
CONSTRUCTION 1919 LAYERS [MM] ELASTOMER LAYERS [MM] 19E119EN91111NON12) 9991919)
SINGLE LAYER ONE12.1 NONE 99 119199
Bl-LAYER ONE12.1 ONE9.1 199 199999
FOUR LAYERS 1999.1 NNO9.2 99 199991
FOUR LAYERS 1909.9 NNO9.2 99 119191
FIG. 7B
EEEEO1OELANNNANONOEE9191ONEROONNNOON9119911OPEREORNAN9E
CONSTRUCTION 1919 LAYERS 1NN) ELASTOMER 911E999 19E119EN911N1NO1N2) 9991919)
91NOEE919ER ONE11.99 NONE 99 99999
SINGLE LAYER ONE 9.9b NONE 12 99291
21 LAYERS ONE 9.9b 9.1 919101111121 99911 19 99991
21 911E999 ONE 999 9.1 119! 10111111 9091119 9199) 91 1999
9 RONEONONOOENE0991991OR
1 111911 11199 91EEE
FIG. 7C
Description:1, 2007. Capps R.N., “Elastomeric materials for acoustical applications”, Dey S., Borvik T., Teng X., Wierzbicki T. and Hopperstad O.S., “On . US. Patent. PENTRATION VELOCITY [%]. 51. Jul. 29, 2014. Sheet 1 0f9. US 8,789,454 B1. 12\_. 10\_. |. ' |. |. ' ' ' 24 I. PIB. I PU-Z. 22 I. _. PU-I.